82 research outputs found

    Crustal structure across the Costa Rican Volcanic Arc

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 1087–1103, doi:10.1002/ggge.20079.Island arcs are proposed to be essential building blocks for the crustal growth of continents; however, island arcs and continents are fundamentally different in bulk composition: mafic and felsic, respectively. The substrate upon which arcs are built (oceanic crust versus large igneous province) may have a strong influence on crustal genesis. We present results from an across-arc wide-angle seismic survey of the Costa Rican volcanic front which test the hypothesis that juvenile continental crust is actively forming at this location. Travel-time tomography constrains velocities in the upper arc to a depth of ~15 km where average velocities are <6.5 km/s. The upper 5 km of crust is constrained by velocities between 4.0 and 5.5 km/s, which likely represent sediments, volcaniclastics, flows, and small intrusions. Between 5 and 15 km depth, velocities increase slowly from 5.5 to 6.5 km/s. Crustal thickness and lower crustal velocities are roughly constrained by reflections from an inferred crust-mantle transition zone. Crustal thickness beneath the volcanic front in Costa Rica is ~40 km with best-fit average lower-crustal velocities between 6.8 and 7.1 km/s. Overall, velocities across the arc in central Costa Rica are at the high-velocity extreme of bulk continental crust velocities and are lower than modern island arc velocities, suggesting that continental compositions are created at this location. These data suggest that preexisting thick crust of the Caribbean Large Igneous Province has a measurable effect on bulk composition. This thickened arc crust may be a density filter for mafic material and thereby support differentiation toward continental compositions.Funding was provided by the NSF-MARGINS and ODP programs, under NSF grant OCE-0405654 and project Nº 113- A4-408 from the University of Costa Rica.2013-10-2

    The Record of the Transition From an Oceanic Arc to a Young Continent in the Talamanca Cordillera

    Get PDF
    The Talamanca Cordillera in the Central America Arc (Costa Rica-Panama) preserves the record of the geochemical evolution from an intraoceanic arc to a juvenile continental arc in an active subduction zone, making it a testbed to explore processes that resulted in juvenile continental crust formation and explore potential mechanisms of early continental crust generation. Here we present a comprehensive set of geochronological, geochemical, and petrological data from the Talamanca Cordillera that tracks the key turning point (12–8 Ma) from the evolution of an oceanic arc depleted in incompatible elements to a juvenile continent. Most plutonic rocks from this transition and postintrusive rocks share striking similarities with average upper continental crust and Archean tonalite, trondhjemite, and granodiorite. We complement these data with seismic studies across the arc. Seismic velocities within the Caribbean Plate (basement of the arc) show a relatively uniform lateral structure consistent with a thick mafic large igneous province. Comparisons of seismic velocity profiles in the middle and lower crust beneath the active arc and remnant Miocene arc suggest a transition toward more felsic compositions as the volcanic center migrated toward the location of the modern arc. Seismic velocities along the modern arc in Costa Rica compared with other active arcs and average continental crust suggest an intermediate composition beneath the active arc in Costa Rica closer to average crust. Our geochemical modeling and radiogenic isotopes systematics suggest that input components from melting of the subducting Galapagos hotspot tracks are required for this compositional change

    Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival

    Get PDF
    Despite the introduction of tyrosine kinase inhibitor therapy, the prognosis for p190-BCR-ABL(+) acute lymphoblastic leukemia remains poor. In the present study, we present the cellular and molecular roles of the Rho GTPase guanine nucleotide exchange factor Vav in lymphoid leukemogenesis and explore the roles of Vav proteins in BCR-ABL-dependent signaling. We show that genetic deficiency of the guanine nucleotide exchange factor Vav3 delays leukemogenesis by p190-BCR-ABL and phenocopies the effect of Rac2 deficiency, a downstream effector of Vav3. Compensatory up-regulation of expression and activation of Vav3 in Vav1/Vav2-deficient B-cell progenitors increases the transformation ability of p190-BCR-ABL. Vav3 deficiency induces apoptosis of murine and human leukemic lymphoid progenitors, decreases the activation of Rho GTPase family members and p21-activated kinase, and is associated with increased Bad phosphorylation and up-regulation of Bax, Bak, and Bik. Finally, Vav3 activation only partly depends on ABL TK activity, and Vav3 deficiency collaborates with tyrosine kinase inhibitors to inhibit CrkL activation and impair leukemogenesis in vitro and in vivo. We conclude that Vav3 represents a novel specific molecular leukemic effector for multitarget therapy in p190-BCR-ABL-expressing acute lymphoblastic leukemia

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Zukunftsvisionen zur Ingenieurausbildung

    No full text
    SIGLEAvailable from TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore