8,808 research outputs found

    Parity violation in quasielastic electron-nucleus scattering within the relativistic impulse approximation

    Get PDF
    We study parity violation in quasielastic (QE) electron-nucleus scattering using the relativistic impulse approximation. Different fully relativistic approaches have been considered to estimate the effects associated with the final-state interactions. We have computed the parity-violating quasielastic (PVQE) asymmetry and have analyzed its sensitivity to the different ingredients that enter in the description of the reaction mechanism: final-state interactions, nucleon off-shellness effects, current gauge ambiguities. Particular attention has been paid to the description of the weak neutral current form factors. The PVQE asymmetry is proven to be an excellent observable when the goal is to get precise information on the axial-vector sector of the weak neutral current. Specifically, from measurements of the asymmetry at backward scattering angles good knowledge of the radiative corrections entering in the isovector axial-vector sector can be gained. Finally, scaling properties shown by the interference γZ\gamma-Z nuclear responses are also analyzed.Comment: 15 pages, 11 figure

    Parity violation and dynamical relativistic effects in (e,eN)(\vec{e},e'N) reactions

    Get PDF
    It is well known that coincidence quasielastic (e,eN)(\vec{e},e'N) reactions are not appropriate to analyze effects linked to parity violation due the presence of the fifth electromagnetic (EM) response RTLR^{TL'}. Nevertheless, in this work we develop a fully relativistic approach to be applied to parity-violating (PV) quasielastic (e,eN)(\vec{e},e'N) processes. This is of importance as a preliminary step in the subsequent study of inclusive quasielastic PV (e,e)(\vec{e},e') reactions. Moreover, our present analysis allows us to disentangle effects associated with the off-shell character of nucleons in nuclei, gauge ambiguities and the role played by the lower components in the nucleon wave functions, i.e., dynamical relativistic effects. This study can help in getting clear information on PV effects. Particular attention is paid to the relativistic plane-wave impulse approximation where the explicit expressions for the PV single-nucleon responses are shown for the first time.Comment: 39 pages, 9 figure

    Global analysis of parity-violating asymmetry data for elastic electron scattering

    Get PDF
    We perform a statistical analysis of the full set of parity-violating asymmetry data for elastic electron scattering including the most recent high precision measurement from QQ-weak. Given the basis of the present analysis, our estimates appear to favor non-zero vector strangeness, specifically, positive (negative) values for the electric (magnetic) strange form factors. We also provide an accurate estimate of the axial-vector nucleon form factor at zero momentum transfer, GAep(0)G_A^{ep}(0). Our study shows GAep(0)G_A^{ep}(0) to be importantly reduced with respect to the currently accepted value. We also find our analysis of data to be compatible with the Standard Model values for the weak charges of the proton and neutron.Comment: 6 pages, 4 figures, 2 tables. Accepted for publication in PR

    The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys

    Full text link
    Crack initiation and propagation under high-cycle fatigue conditions have been investigated for a polycrystalline Ni-based superalloy by in-situ synchrotron assisted diffraction and phase contrast tomography. The cracks nucleated along the longest coherent twin boundaries pre-existing on the specimen surface, that were well oriented for slip and that presented a large elastic incompatibility across them. Moreover, the propagation of microstructurally short cracks was found to be determined by the easy slip transfer paths across the pre-existing grain boundaries. This information can only be obtained by characterization techniques like the ones presented here that provide the full set of 3D microstructural information

    Cosmology with moving dark energy and the CMB quadrupole

    Get PDF
    We study the consequences of a homogeneous dark energy fluid having a non-vanishing velocity with respect to the matter and radiation large-scale rest frames. We consider homogeneous anisotropic cosmological models with four fluids (baryons, radiation, dark matter and dark energy) whose velocities can differ from each other. Performing a perturbative calculation up to second order in the velocities, we obtain the contribution of the anisotropies generated by the fluids motion to the CMB quadrupole and compare with observations. We also consider the exact problem for arbitrary velocities and solve the corresponding equations numerically for different dark energy models. We find that models whose equation of state is initially stiffer than radiation, as for instance some tracking models, are unstable against velocity perturbations, thus spoiling the late-time predictions for the energy densities. In the case of scaling models, the contributions to the quadrupole can be non-negligible for a wide range of initial conditions. We also consider fluids moving at the speed of light (null fluids) with positive energy and show that, without assuming any particular equation of state, they generically act as a cosmological constant at late times. We find the parameter region for which the models considered could be compatible with the measured (low) quadrupole.Comment: 23 pages, 6 figures. Confidence intervals calculated from WMAP data, new references and comments included. Final version to appear in PR

    Extensions of Superscaling from Relativistic Mean Field Theory: the SuSAv2 Model

    Get PDF
    We present a systematic analysis of the quasielastic scaling functions computed within the Relativistic Mean Field (RMF) Theory and we propose an extension of the SuperScaling Approach (SuSA) model based on these results. The main aim of this work is to develop a realistic and accurate phenomenological model (SuSAv2), which incorporates the different RMF effects in the longitudinal and transverse nuclear responses, as well as in the isovector and isoscalar channels. This provides a complete set of reference scaling functions to describe in a consistent way both (e,e)(e, e') processes and the neutrino/antineutrino-nucleus reactions in the quasielastic region. A comparison of the model predictions with electron and neutrino scattering data is presented.Comment: 19 pages, 24 figure
    corecore