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Parity violation and dynamical relativistic effects in (�e,e′ N) reactions
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It is well known that coincidence quasielastic (�e,e′N ) reactions are not appropriate to analyze effects linked
to parity violation due the presence of the fifth electromagnetic response RT L′

. Nevertheless, in this work we
develop a fully relativistic approach to be applied to parity-violating (PV) quasielastic (�e,e′N ) processes. This is of
importance as a preliminary step in the subsequent study of inclusive quasielastic PV (�e,e′) reactions. Moreover,
our present analysis allows us to disentangle effects associated with the off-shell character of nucleons in nuclei,
gauge ambiguities, and the role played by the lower components in the nucleon wave functions, i.e., dynamical
relativistic effects. This study can help in getting clear information on PV effects. Particular attention is paid
to the relativistic plane-wave impulse approximation where the explicit expressions for the PV single-nucleon
responses are shown for the first time.
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I. INTRODUCTION

The electroweak structure of the nucleon can be param-
eterized in terms of nine form factors, three for each flavor
(u, d, s) corresponding to the electric (E), magnetic (M), and
axial-vector (A) sectors. The sole use of PV electron-proton
(PVep) asymmetry measurements does not allow one to extract
the nine form factors of the nucleon. On the contrary, the
combination of parity-conserving (PC) cross sections and
parity-violating (PV) asymmetries in elastic and quasielastic
(QE) electron scattering processes, in addition to measure-
ments of different observables from neutrino scattering and
β decay, constitutes the general framework in which the
determination of the form factors of the nucleon should be
accomplished.

PV electron scattering is a powerful tool to study the
weak neutral current (WNC) and it can provide useful
information on the strange matrix elements (s̄γμs and s̄γμγ5s)
in nucleons and nuclei. Strange form factors contain new
information [in addition to the electromagnetic (EM) ones]
on the nucleon structure and provide also strong constraints
to any microscopic model aiming to describe the nucleonic
structure starting from quantum chromodynamics (QCD).

It has been proven [1] that the PVep asymmetry is an
excellent observable in order to determine the vector strange
form factors of the nucleon. However, this requires one to have
good knowledge of the remaining ingredients that enter into the
description of the asymmetry, in particular, the EM and axial-
vector form factors and the WNC effective weak-coupling
constants (that include radiative corrections). With regard to
the EM form factors, their general structure and behavior are
well described. In the case of the axial-vector form factor, most
of the information we have comes from the analysis of neutrino
scattering experiments and β-decay measurements. Although
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some discussion has recently emerged on the value of the
axial-vector mass due to the data taken by the MiniBooNE
collaboration [2,3] (see also Refs. [4,5] and references therein),
the standard parametrization of the axial-vector form factor
is still accepted by the majority of the scientific community.
However, a serious problem which is not yet solved concerns
the treatment of radiative corrections. Authors in Refs. [6,7]
claim that radiative corrections are very small for processes
where only the weak coupling takes place. Hence, the descrip-
tion of the axial-vector form factor at tree level is expected
to be a very good approximation in reactions that involve
neutrinos or antineutrinos as probes. On the contrary, radiative
corrections in the axial-vector sector for PV electron scattering
are very important (in contrast to the purely vector current).
This is one of the main sources of error for the determination of
the strange magnetic form factor through the analysis of PVep
asymmetry data. The strong correlation between the magnetic
and electric strangeness content in the nucleon (μs and ρs)
leads the previous uncertainties to be propagated also to the
strange electric form factor. The main contribution in the axial-
vector form factor comes from the isovector (T = 1) channel;
therefore, the evaluation and knowledge of the isovector
contribution to the axial nuclear response, RT =1

A , is of great
importance in order to interpret correctly the PV asymmetry.
Nowadays it constitutes one of the main challenges both
experimentally and theoretically to the scientific community.

This work deals with the study of exclusive PV electron-
nucleus scattering processes. We restrict ourselves to the
QE regime that corresponds to the electron being scattered
from a single nucleon that is subsequently ejected from
the target nucleus and detected in coincidence with the
scattered electron. The analysis of exclusive (�e,e′N ) processes
constitutes a preliminary step in the study of PV effects in
inclusive (�e,e′) reactions. The latter are of great relevance
in order to get more insight into the weak structure of the
nucleon. In (�e,e′N ) reactions the description of final-state
interactions (FSI) between the ejected nucleon and the residual
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nucleus leads to the appearance of the so-called fifth EM
response function RT L′

. This response only contributes if the
helicity of the incident electron is measured and, consequently,
its contribution to the PV asymmetry differs from zero.
This result is of great importance because it might lead
the exclusive parity-violating quasielastic (PVQE) asymmetry
to be irrelevant when attempting to get information on the
responses attached to the interference between EM and WNC
currents (henceforth simply denoted as PV responses). Note
that the EM contributions are in general several orders of
magnitude larger than the interference ones. However, there
are some particular kinematics for which the contribution of
the PV responses can be similar or even larger than the purely
EM one. Moreover, this study provides useful information on
the uncertainties linked to the treatment of the off-shell vertex
and on the discrepancies associated with the use of different
nuclear models. These effects can be of importance in the
subsequent analysis of inclusive (�e,e′) processes where the
fifth EM response does not enter. Hence, the work presented
here should be considered in concert with the study applied
to inclusive QE electron scattering that is presented in an
accompanying paper [8]. Whereas here we emphasize the role
played by dynamical relativistic effects, gauge ambiguities,
and off-shell uncertainties in the exclusive PV responses, being
aware of the enormous difficulties in getting information on
PV effects, in Ref. [8] the focus is placed on the behavior of
the inclusive PV responses and the asymmetry and how they
are affected by the weak structure of the nucleon.

To conclude, we summarize in what follows how this
paper is organized. In Sec. II we introduce the general
formalism needed to evaluate the exclusive cross section for
PVQE electron-nucleus scattering. We start by describing the
kinematics and the calculation of the differential cross section
for the exclusive process. Then we present the models and
approximations employed to the description of the nuclear
vertex. Special emphasis is placed on the general formalism
involved in the relativistic plane-wave impulse approximation
(see Sec. II A). Section III presents the analysis of the results.
The effects in the PV responses due to the use of different
prescriptions for the nuclear current and the treatment of
FSI are analyzed in Secs. IIIA2 and III B, respectively. In
Sec. III C we study the helicity asymmetry linked to the
exclusive process. There we study the impact on the asymmetry
due to FSI, relativistic dynamical effects, off-shell effects,
and the particular description of the form factors of the
nucleon. Finally, a brief summary and our main conclusions
are presented in Sec. IV.

II. FORMALISM FOR (�e,e′ N) REACTIONS WITH PARITY
VIOLATION

In this section we summarize the general formalism
involved in the description of (�e,e′N ) reactions when the weak
interaction is included in addition to the dominant EM one. We
use the Born approximation, that is, one boson exchanged in
the process: a photon for the EM interaction and Z boson
for the weak interaction. A general representation of the
process is illustrated in Fig. 1. Here the incident electron,
with four-momentum K

μ
i = (εi,ki) and helicity h, is scattered

FIG. 1. (Color online) General scheme of the scattering process
A(e,e′N )B. The scattering frame is defined by {x̂, ŷ, ẑ}, whereas the
hadronic reference system is given by {1̂,2̂,3̂}. Also shown are the
four-momenta and angular variables that enter into the description of
the process.

through an angle θe to four-momentum K
μ
f = (εf ,kf ). The

nuclear target is characterized in the laboratory frame by
P

μ
A = (MA,0) and the residual system by P

μ
B = (EB,pB).

The four-momentum corresponding to the ejected nucleon
is denoted as P

μ
N = (EN,pN ). Finally, the transferred four-

momentum in the process (carried by the photon or Z boson)
is given by Qμ = (ω,q).

Detailed studies of the general kinematics involved in
exclusive (e,e′N ) reactions have been presented in previous
works [9,10]. Here we simply recall the basic quantities of
interest for later discussion. The missing momentum pm is
defined as pm ≡ −pB = pN − q. The magnitude pm = |pm|
characterizes the split in momentum flow between the detected
nucleon and the unobserved daughter nucleus. Correspond-
ingly, an excitation energy of the residual system can be
introduced: ε ≡ EB − E0

B , with E0
B the total energy of the

residual nucleus in its ground state.
The (�e,e′N ) process is completely determined by six in-

dependent kinematical variables. From these, the dependence
on the electron scattering angle θe and the azimuthal angle φN

can be isolated by geometry. In contrast, the dependencies on
the four remaining variables (denoted as dynamical variables)
involve detailed aspects of the nuclear current matrix elements.
Notwithstanding, energy and momentum conservation can be
used to determine the allowed regions in the (ε-pm) plane (the
interested reader can go to Refs. [11–13] for details). Once the
general kinematics have been set up, the general cross section
in the laboratory system can be written as [9,13,14]

dσ

dεf d
f d
N

= K

8π2
f −1

rec

(
εf

εi

) [
1

Q4
ημνW

μν + −2

Q2M2
Z

Re(̃ημνW̃
μν)

]
,

(1)

where we have introduced the kinematical constant K ≡
MBMNpN

MA
and frec is the usual recoil factor [13]. The purely
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EM and interference leptonic tensors are given by

ημν = e2(sμν + haμν), (2)

η̃μν = eg

4 cos θW

[(aV − haA)sμν + (haV − aA)aμν], (3)

with aV and aA the vector and axial-vector WNC electron
couplings and h the electron helicity and we have separated
the overall tensor into its symmetric (sμν) and antisymmetric
(aμν) contributions:

sμν = Ki
μKf

ν + Ki
νK

f
μ + Q2

2
gμν,

(4)
aμν = iεμναβKα

i K
β
f .

The hadronic tensors contain all of the information on the
nuclear structure, and they are given as

Wμν =
∑

IF

[
J

μ
EM(q)

]∗
J ν

EM(q),

(5)
W̃μν =

∑
IF

[
J

μ
EM(q)

] ∗ J ν
WNC(q),

in terms of the purely EM and WNC matrix elements:

J
μ
EM(q) = e〈N ; B|Ĵ μ

EM|A〉,
(6)

J
μ
WNC(q) =

(
eg

cos θW

)
〈N ; B|Ĵ μ

WNC|A〉.

The contraction of the leptonic and hadronic tensors can be
expressed in terms of six response functions that are given by
taking the appropriate components of the hadronic tensors (see
Ref. [15] for details):

ημνW
μν = e22v0(vLRL + vT RT + vT LRT L + vT T RT T

+hvT L′RT L′
), (7)

where v0 = 4εiεf cos2 θe

2 and the labels L and T refer to
projections of the current matrix elements longitudinal and
transverse to the direction of the momentum carried by the
exchanged virtual boson. The terms vα denote the kinematical
factors that depend only on the leptonic tensors and whose
explicit expressions are given in Ref. [15].

Likewise, the contraction of the γ -Z interference tensors
can be written in the form

η̃μνW̃
μν = −1

8m2

(
eg

cos θW

)2

2v0[(aV − haA)(vLR̃L

+ vT R̃T + vT LR̃T L + vT T R̃T T )

+ (haV − aA)(vT ′R̃T ′ + vT L′R̃T L′
)]. (8)

The general expression for the exclusive cross section in
the presence of the weak interaction finally results in the

following:

dσ

dεf d
f d
N

= σMKf −1
rec

{ ∑
α=L,T ,T L,T T

vαRα + hvT L′RT L′

− A0

2

[
(aV − haA)

∑
α=L,T ,T L,T T

vαR̃α

+ (haV − aA)
∑

α′=T ′,T L′
vα′R̃α′

]}
, (9)

where we have introduced the Mott cross section σM =
4α2

Q4 ε2
f cos2(θe/2) and the term A0 that scales the PV effects:

− A0

2
≡ 2Q2

e2M2
Z

(
g

4 cos θW

)2

. (10)

The evaluation of the EM and PV hadronic response func-
tions (Rα,R̃α) requires the knowledge of the corresponding
nuclear tensors: Wμν , W̃μν . This implies a description of
the nuclear initial and final states and the many-body current
operators. This is a very complicated, almost unapproachable,
problem unless specific approximations are considered. In
our case, we focus on the kinematical region close to the
QE peak where the impulse approximation (IA) constitutes
an excellent description of the problem. Within the IA the
exchanged boson (photon and/or Z) interacts only with one
nucleon that is consequently ejected. Hence, the scattering
process is given simply as an incoherent sum of single-nucleon
scattering processes, i.e., the current is taken as a one-body
operator and one makes use of single-nucleon wave functions.
In momentum space we may write in general

Jμ ≡
∫

dp �F (p + q)Ĵ μ�B(p), (11)

where �B and �F are the bound and scattered nucleon wave
functions, respectively, and Ĵ

μ
N is the one-body nucleon current

operator.
Within the IA the virtual boson attaches to a single bound

nucleon with four-momentum P μ = (E,p) that is conse-
quently ejected from the nucleus and interacts with the residual
nucleus. The asymptotic four-momentum of the nucleon
is given by P

μ
N = (EN,pN ), and the residual nucleus is

characterized by P
μ
B = (EB,pB ).

In this work we use a fully relativistic calculation where the
bound nucleon states are given as self-consistent Dirac-Hartree
solutions, derived within a relativistic mean field (RMF)
approach using a Lagrangian containing σ , ω, and ρ mesons
[16]. The ejected nucleon state is described as a relativistic
scattering wave function. Here different options have been
considered. First, the relativistic plane-wave impulse approxi-
mation (RPWIA), namely the use of relativistic plane-wave
spinors, i.e., no interaction between the outgoing nucleon
and the residual nucleus, is considered; second, the effects
of FSI are incorporated by solving the Dirac equation in the
presence of relativistic optical energy-dependent scalar and
vector potentials. This constitutes the relativistic distorted-
wave impulse approximation (RDWIA). In this work we make
use of the energy-dependent-A-independent optical potential
for oxigen EDAI-O (see Refs. [17–20] for details).
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Concerning the current operator, we use the relativistic free
nucleon expressions for the two usual prescriptions considered
in the literature, i.e., CC1 and CC2 [21]:

(i) electromagnetic current operator:

Ĵ
μ
EM

∣∣
CC1 = (F1 + F2)γ μ − F2

2MN

(P + PN )μ, (12)

Ĵ
μ
EM

∣∣
CC2 = F1γ

μ + i
F2

2MN

σμνQν ; (13)

(ii) vector neutral current:

Ĵ
μ
WNC,V

∣∣
CC1 = (F̃1 + F̃2)γ μ − F̃2

2MN

(P + PN )μ, (14)

Ĵ
μ
WNC,V

∣∣
CC2 = F̃1γ

μ + i
F̃2

2MN

σμνQν ; (15)

(iii) axial neutral current:

Ĵ
μ
WNC,A = Ge

Aγ μγ 5 + G̃P

MN

Qμγ 5. (16)

We have introduced the “on-shell” four-momentum P
μ =

(E,p) with E =
√

p2 + M2
N and p the bound nucleon mo-

mentum. Note that the two prescriptions, CC1 and CC2,
are equivalent for free on-shell nucleons. However, the IA
deals with off-shell bound and ejected nucleons. Hence, the
two operators lead to different results. Moreover, current
conservation (EM and vector WNC contributions) is in general
not fulfilled and, consequently, uncertainties dealing with
the particular gauge selected also emerge. Here we consider
three different options: (i) no current conservation is imposed
at all (Landau gauge), (ii) current conservation is imposed
by eliminating the third component (Coulomb gauge), and
(iii) as in the previous case but eliminating the time component
(Weyl gauge). In next sections we estimate and analyze the
uncertainties introduced by these different options in the PV
responses and in the PVQE asymmetry.

A. Relativistic plane-wave impulse approximation

In this section we present the response functions and cross
section within the RPWIA, namely neglecting FSI between
the outgoing nucleon and the residual nucleus. Although this
is an oversimplified description of the scattering process, it
allows one to get analytical expressions for the responses,
hence providing significant insight into the specific behavior
of the various observables. A great advantage of the RPWIA
is linked to the clear separation between the contributions
associated with the upper and lower components in the
relativistic bound nucleon wave functions. This is known as
“relativistic dynamics” or “spinor distortion” in contrast to
the purely relativistic kinematical effects. In what follows we
briefly present the general procedure of the analysis. We follow
closely our previous studies in Refs. [9,13,22] and give all the
details in the Appendix.

The hadronic current in RPWIA is given in the general
form:

Jμ = uN (pN,sN )Ĵ μ�m
κ (p), (17)

where u(pN,sN ) is a Dirac free spinor describing the outgoing
nucleon, whereas �m

κ (p) is the Fourier transform of the bound
nucleon relativistic wave function evaluated with the RMF
model. This four-component wave function can be expressed
in terms of the free Dirac spinors: u(p,1/2), u(p,–1/2),
v(p,1/2), and v(p,–1/2). Proceeding this way, one can
identify the specific contributions associated with the upper
(positive-energy) and lower (negative-energy) components in
the response functions and the cross section. The general
(nontrivial) procedure has been presented in Ref. [9] in the case
of PC electron scattering processes, namely for EM response
functions. In this section we extend the analysis to the PV
responses and obtain the final expressions that will be of
interest for the discussion of results in the next section. As
already mentioned, all details on the developments concerning
the nucleonic tensors are given in the Appendix.

The hadronic EM and interference WNC matrix elements
in RPWIA result,

J
μ
EM = e

[
u(pN,SN )Ĵ μ

EM �
mj

k (p)
]
, (18)

J
μ
WNC =

(
g

4 cos θW

) [
u(pN,SN )Ĵ μ

WNC �
mj

k (p)
]
. (19)

After laborious algebra (see the Appendix), the hadronic
tensors can finally be written in the form:

Wμν = e2[WμνNuu(p) + ZμνNvv(p) + N μνNuv(p)], (20)

W̃μν =
(

eg

4 cos θW

)
[W̃μνNuu(p) + Z̃μνNvv(p)

+ Ñ μνNuv(p)], (21)

where in both tensors we have isolated the contribution
coming from the positive-energy components (denoted by
the indices uu), the negative-energy (vv term) components,
and the interference ones (uv). Note that the three terms
factorize into single-nucleon tensors multiplied by functions
associated with the upper (u) and lower (v) components in
the bound nucleon wave function in momentum space. These
functions can be interpreted as the positive-energy (Nuu),
negative-energy (Nvv), and interference (Nuv) contributions to
the nucleon momentum distribution. The explicit expressions
are given in the Appendix (see also Refs. [9,10] for more
details).

With regard to the single-nucleon tensors, the ones corre-
sponding to the purely EM sector, Wμν , Zμν , and N μν , have
been analyzed in detail in Ref. [9] providing explicit expres-
sions for the two current operator prescriptions considered.
The Lorentz invariant EM amplitude is given by1

ημνW
μν ∝ sμν[WμνNuu(p) + ZμνNvv(p) + N μνNuv(p)].

(22)

By contrast with the EM case [9], the single-nucleon
electroweak interference tensors, W̃μν , Z̃μν , and Ñ μν , present
a rather more complex structure with its symmetrical and
antisymmetrical contributions not so clearly isolated (see the

1Note that the fifth EM response, RT L′
, does not enter into RPWIA.
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Appendix for explicit expressions). However, since the purely
vector component in the WNC (denoted by the index V) leads
to purely real tensors, whereas the axial term (denoted by A)

gives purely imaginary tensors, it can be easily proven that
its contraction with the corresponding leptonic tensor can be
written as

Re[̃ημνW̃
μν] ∝ (aV − haA)sμν

[W̃μν
V Nuu(p) + Z̃μν

V Nvv(p) + Ñ μν
V Nuv(p)

]
+ (haV − aA)aμν

[W̃μν
A Nuu(p) + Z̃μν

A Nvv(p) + Ñ μν
A Nuv(p)

]
. (23)

Note that only the symmetric contribution in the vector-type single-nucleon tensors and, likewise, the antisymmetric axial-type
tensor contribute to the cross section and response functions.

The hadronic responses in RPWIA in Eq. (9) are built directly from the corresponding single-nucleon responses RK
x multiplied

by the momentum distributions Nx with x = uu,uv,vv. The differential cross section is finally given as

dσ

dεf d
f d
N

= σM

MBMNpN

MA frec

∑
x=uu,uv,vv

{ ∑
α=L,T ,T L,T T

vαRα
xNx(p)

− A0

2

[
(aV − haA)

∑
α=L,T ,T L,T T

vαR̃α
xNx(p) + (haV − aA)

∑
α′=T ′,T L′

vα′R̃α′
x Nx(p)

]}
. (24)

In the next section we analyze the results obtained for
the interference response functions and PV asymmetry within
RPWIA, taking the two prescriptions of the current operator
and the three gauges. These results are also compared with
more sophisticated calculations where FSI have been incorpo-
rated through the use of relativistic complex optical potentials.
We discuss whether the introduction of the exclusive helicity
asymmetry makes sense in getting information on PV effects
and analyze their limits of applicability.

III. ANALYSIS OF THE RESULTS

In this section we present our results for the different
exclusive observables: responses, cross section, and helicity
asymmetry. Our interest is focused on the WNC interference
contributions and how these can alter the purely EM responses.
It is well known that the process (�e,e′N ) is not well suited
to studying PV effects because it is very hard to devise an
observable where the EM contributions, orders of magnitude
larger than the PV interference ones, could be almost canceled
out. In fact, this is the reason to introduce the helicity
asymmetry in inclusive (�e,e′) processes. However, whereas
the difference between the (�e,e′) cross sections corresponding
to opposed electron helicities is nonzero because of the PV
effects (for the EM interaction with parity conservation such
a difference is strictly zero), the situation differs for (�e,e′N )
reactions. Here the presence of FSI leads to the appearance of
the so-called fifth response that is also linked to the electron
helicity. This response is a purely EM contribution to the
helicity asymmetry and, hence, makes it very difficult to
isolate contributions coming from PV effects. However, we
are convinced that the study of PV (�e,e′N ) reactions might
be of great interest as a preliminary step in the subsequent
study of inclusive processes. Moreover, off-shell and gauge
ambiguities in (�e,e′N ) also have an impact on the inclusive
responses and PV helicity that needs to be carefully evaluated.
Therefore, in this paper we focus on the interference (�e,e′N )
observables paying special attention to the contribution of the
positive- and negative-energy components in the nucleon wave

functions and to the effects introduced by a proper description
of the FSI between the outgoing nucleon and the residual
nucleus. The scattering reaction formalism is described fully
relativistically, namely not only are the kinematics relativistic,
but also the nuclear dynamics are described making use of
the relativistic Dirac equation in the presence of relativistic
potentials.

All results presented in the next sections correspond
to (q,ω)-constant kinematics (sometimes also referred as
quasiperpendicular kinematics). We have selected the energy
transfer to correspond almost to the QE peak value, where
one expects the validity of the impulse approximation to
be highest. The value of the transfer momentum is fixed to
q = 500 MeV/c (ω = 132 MeV) and results are presented
versus the missing momentum pm, which in this section is
written p for simplicity. Finally, in most of the cases we
have chosen the azimuthal angle φN equal to zero. Only when
discussing the helicity asymmetry do we analyze the effects
linked to a selection of various φN values.

A. Relativistic plane-wave impulse approximation

We start our study with the simple RPWIA case. The general
formalism for the PV responses has been presented in the
previous section with explicit expressions given in the Ap-
pendix. Our discussion follows closely the analysis presented
in Refs. [9,22] for the case of purely EM unpolarized and
polarized responses. We show results for the six interference
responses. First we restrict our attention to the separate uu, uv,
and vv single-nucleon responses Rα

x analyzing off-shell and
gauge ambiguities in addition to the particular contribution of
each component: positive-energy, negative-energy, and the uv
interference term. Then we present results for the nuclear and
hadronic responses.

1. PV single-nucleon responses

Figures 2 and 3 show the PV single-nucleon responses.
Let us start our discussion with the case of the purely
transverse channel (Fig. 2). Here the responses depend only

045503-5
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FIG. 2. Transverse single-nucleon responses: T (upper panels),
T T (middle), and T ′ (bottom). The separate projection components
are shown: uu (left panels), uv (central), and vv (right). Results are
presented for the CC1 (thin lines) and CC2 (thick) current operators.

on the particular current operator selected, CC1 versus CC2,
but not on the gauge. Moreover, the current operator does
not introduce significant effects in the uu contributions (left
panels). On the contrary, the interference uv and, particularly,
the negative-energy vv terms are strongly affected by the
current operator leading the CC1 prescription to the largest
contribution (in absolute value). Therefore, one concludes that
relativistic dynamical effects do depend very much on the
particular choice of the current operator.

The purely longitudinal and interference longitudinal-
transverse single-nucleon responses are shown in Fig. 3. In
this case, the presence of the longitudinal channel leads to
differences when comparing various gauges in addition to the
particular current operator selected. Concerning the effects
introduced by the operator, these are rather similar to the
ones already observed for the purely transverse responses
(see previous figure). Hence, we restrict our attention to
the ambiguities that emerge from the particular “gauge”
considered: Landau (NCC1 and NCC2), Coulomb [CC1(0)
and CC2(0)], and Weyl [CC1(3) and CC2(3)]. As observed,
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FIG. 3. (Color online) As for Fig. 2, except that now the results
are for the longitudinal responses: L (upper panels), interference
T L (middle), and T L′ (bottom). Again the two currents have been
selected, CC1 (thin lines) and CC2 (thick); and the three gauges:
Landau (solid lines), Coulomb (dashed), and Weyl (dot-dashed).

results for Coulomb and Landau gauges are very similar in all
cases no matter which specific current operator is selected. On
the contrary, results corresponding to the Weyl gauge [CC1(3)
or CC2(3)] lead to very significant differences, even in the case
of the purely positive-energy contribution uu.

Summarizing, the “off-shell” effects observed in the PV
single-nucleon responses are very similar to the ones already
presented for the purely EM responses [9]. Since such effects
are directly linked to the vector part, ∼γ μ, in the current, the
general arguments already presented in Ref. [9] also apply
here. First, the discrepancy between CC1 and CC2 results are
larger for the uv terms and particularly for the vv terms. On the
contrary, the uu contributions show a very mild dependence on
the current operator selected (see Ref. [9] for an explanation of
these effects). Second, the results corresponding to Landau and
Coulomb gauges are always similar, whereas those obtained
with the Weyl gauge depart significantly. This behavior can be
understood by taking the difference between the longitudinal
current matrix elements, JL = J 0 − ω

q
J 3, evaluated within the

different gauges (see Ref. [9] for details).
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FIG. 4. (Color online) Hadronic response functions for a proton
in the 1p1/2 shell in 16O. The labels of the various curves are as in
Fig. 3.

2. PV hadronic responses

In this section we present and analyze the PV hadronic
responses corresponding to the case of protons in the 1p1/2

shell for 16O (Figs. 4 and 5). As already shown, these responses
are given as products of the single-nucleon responses and
the corresponding momentum distribution components: Nuu,
Nuv , and Nvv . In Fig. 4 we evaluate the effects associated
with the choice of the current operator and the gauge. These
results are consistent with the previous studies applied to the
EM responses. Note that the largest discrepancies emerge
with the Weyl gauge. On the contrary, Landau and Coulomb
gauges lead to rather similar results. It is important to point
out the extremely different behavior shown by the results
obtained with the Weyl gauge: CC1(3) and CC2(3). Note
the discrepancy between the CC1(3) longitudinal response
and the remaining ones. This result can be ascribed to the
magnitude of the single-nucleon component R̃L

vv (see Fig. 3),
that is dominant for all momenta considered.

In what follows we restrict our attention to the Landau
gauge, i.e., NCC1 and NCC2 prescriptions. Results are similar
within the Coulomb gauge, whereas Weyl ones are dismissed
because they fail to describe cross sections and polarization
ratios data for different kinematics [23].

In Fig. 5 we show the PV hadronic responses isolating the
specific contributions given by the components uu, uv, and vv.
As shown, the vv term (green dot-dashed line) is negligible in
most of the cases. This is a consequence of the value of the
momentum distribution Nvv: one order (several) of magnitude
smaller than Nuv (Nuu) (see Ref. [9]). On the contrary, the
particular contribution of the interference uv component (red
dashed line) depends on the specific response considered and
the off-shell prescriptions selected. As already commented on,
the use of the CC1 operator tends to maximize the role played
by the interference uv terms. In particular, it is noteworthy to
point out the significant uv contribution in the responses: R̃T L,
R̃T L′

, and R̃T T . Notice that such a contribution is even bigger
than the purely uu term in the case of the CC1 current and the
responses R̃T L and R̃T T (upper central panels). Although not
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FIG. 5. (Color online) Energy projection contributions to the
hadronic response functions for the 1p1/2 shell in 16O: uu (blue dotted
line), uv (red dashed), and vv (green dot-dashed). The total responses
are represented by the solid black lines. The six top panels correspond
to results obtained with the Landau gauge and CC1 current operator,
whereas the bottom ones refer to the CC2 current.

shown, similar results and comments apply to the case of a
neutron in the p1/2 shell being emitted from the nucleus. This
outcome differs from the one pertained to the EM responses
where the longitudinal contribution (related with the electric
charge) is very small in the neutron responses.

For completeness, we also present in Fig. 6 the PV hadronic
responses corresponding to a 1p3/2-shell proton in 16O.
Comparing these results with the previous ones, i.e., proton in
the 1p1/2 shell (Fig. 5), one observes the significant reduction
in the effects associated with the uv (and vv) components. This
can be easily explained taking into account the different role
played by the lower components of the bound nucleon wave
function for different spin-orbit parner shells. In fact, for the
jack-knifed states (p1/2) the amplitudes of the negative-energy
projections are much larger than those for the stretched states
(p3/2). This is due to the different quantum number � of the
lower components in the two kinds of states: � = 0 (� = 2) for
p1/2 (p3/2) states (see Ref. [10]).
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FIG. 6. (Color online) As for Fig. 5 but now for a proton in the
1p3/2 shell in 16O.

B. Final-state interactions

In this section we analyze the effects introduced by the
description of the FSI between the ejected nucleon and the
residual nucleus. Results for the PV exclusive responses are
shown in Fig. 7. As already mentioned in previous sections,
in this work FSI are accounted for by solving the Dirac
equation in the presence of complex phenomenological optical
potentials fitted to elastic nucleon scattering data. In particular,
here we restrict ourselves to the use of the energy-dependent
A-independent EDAI-O potential. The use of other potentials
does not modify the main conclusions. The kinematics have
been fixed as in the previous figures, namely the transfer
momentum is fixed to q = 500 MeV/c and the energy transfer
is chosen to be in the maximum of the QE peak, ω = 132 MeV.
Coplanar kinematics, i.e., φN = 0, have been selected.

All results presented in Fig. 7 correspond to the case
of a proton being ejected from the 1p1/2 shell in 16O. In
the six upper panels we compare the results evaluated in
the RPWIA limit (green lines) with the ones obtained by
including FSI (blue lines). As observed, in most of the cases
FSI lead to a significant reduction in the magnitude of the
corresponding response, being larger for the longitudinal-

-0.004

-0.002

0

RPWIA NCC2
EDAI-O NCC2

0

0.01

0.02

0.03

RPWIA NCC1
EDAI-O NCC1

-0.04

-0.02

0

0 0.1 0.2 0.3 0.40

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3 0.4
p (GeV)

0

0.002

0.004

0 0.1 0.2 0.3 0.4
-0.15

-0.1

-0.05

0fm
3

RL RTL

RT
RTT

RTL’

RT’

~ ~ ~

~ ~ ~

(a) (b) (c)

(d) (e) (f)

-0.004

-0.002

0

EDAI-O NCC2
EMAi&f NCC2

0

0.01

0.02

EDAI-O NCC1
EMAi&f NCC1

-0.02

0

0 0.1 0.2 0.3 0.40

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3 0.4
p (GeV)

0

0.002

0.004

0 0.1 0.2 0.3 0.4
-0.15

-0.1

-0.05

0fm
3

RL RTL

RT
RTT

RTL’

RT’

~ ~ ~

~~~

(g) (h) (i)

(j) (k) (l)

FIG. 7. (Color online) PV hadronic responses for a proton in the
1p1/2 shell in 16O. In the upper panels results in RPWIA (green
lines) are compared with the RDWIA ones using the EDAI-O
optical potential (blue). The bottom panels present RDWIA-EDAI-O
results (green) compared with the ones evaluated with the effective
momentum approximation (EMA) (red). See text for details.

transverse interference responses: R̃T L and R̃T L′
(they are

reduced by a factor of 2). A particular comment applies to
R̃T T : FSI effects completely modify the behavior shown by
the response, even changing the global sign (from negative
RPWIA values to positive RDWIA ones). However, note the
smallness of R̃T T (likewise for R̃L) whose contribution is
negligible compared with the remaining responses. Hence, it
is not strange that this response shows a very high sensitivity
to FSI and its particular description. Finally, concerning the
differences ascribed to the use of a particular current operator,
i.e., CC1 versus CC2, the results in Fig. 7 show a similar
behavior for the two approaches, viz. RPWIA and RDWIA.

To conclude, we analyze the so-called dynamical relativistic
effects, that is, relativistic effects associated with the descrip-
tion of the nucleon wave functions. We compare our fully
relativistic RDWIA results with those obtained by projecting
out the negative-energy components in both the bound and
scattered nucleon wave functions. This is equivalent to the
uu, uv, and vv decomposition shown for the RPWIA case in
the previous section. Here we apply the study to the distorted
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calculation. In the six bottom panels in Fig. 7 we compare the
RDWIA results with the positive-energy projected ones. The
latter approach is simply known as the effective momentum
approximation (EMA) (see Refs. [23–27] for details on how
the EMA approach is defined). As expected, the differences
introduced by the choice of the current operator and/or gauge
are much smaller within the EMA limit. Note that EMA does
not incorporate contributions linked to the uv or vv terms;
hence, the difference in the responses come solely from the
“off-shell” nucleon effects. This behavior, shown in Fig. 7 for
the PV responses, was already observed for the purely EM
ones [9].

C. Exclusive helicity asymmetry

We can introduce an asymmetry for the exclusive process
A(�e,e′N )B, defined as the ratio between the difference and
the sum of exclusive cross sections evaluated for positive and
negative electron helicity, respectively. This is given as

Aexcl = σ+ − σ−

σ+ + σ− , (25)

where σ+/− represents the differential cross section corre-
sponding to positive or negative incident electron helicity (24).
However, there exists a crucial difference between the above
asymmetry defined for (�e,e′N ) processes and the correspond-
ing one constructed for inclusive (�e,e′) reactions (likewise for
elastic PV electron scattering on the proton). Whereas for (�e,e′)
and elastic PV ep scattering the asymmetry only differs from
zero because of the role played by the weak interaction, in
the case of (�e,e′N ) processes the purely EM interaction also
gives a contribution to σ+ − σ− through the fifth EM response
function (see discussion of the previous figures). Therefore, the
exclusive helicity asymmetry introduced in this section is not,
in principle, a good observable to analyze effects linked to
the weak interaction; the purely EM one dominates by orders
of magnitude. On the contrary, this observable is particularly
suited to study FSI. In what follows we discuss in detail these
results analyzing under which conditions both the purely EM
and the WNC interference contributions give similar results.
In other words, we discuss the limits under which the study of
PV responses makes sense for A(�e,e′N )B reactions.

From the general expression for the cross section in Eq. (9)
we can isolate in the helicity asymmetry in Eq. (25) its
purely EM contribution, AEM

excl, and the one associated with
the presence of the weak interaction, AWNC

excl :

Aexcl(θe,q,ω,Em,φN,p)

= AEM
excl(θe,q,ω,Em,φN,p) + AWNC

excl (θe,q,ω,Em,φN,p).

(26)

Here we express the explicit dependence of the asymmetry
with all the kinematical variables. In terms of the nuclear
response functions, the interference AWNC

excl term can be written
in the form:

AWNC
excl = A0

2G2
[aA(vLR̃L + vT R̃T + vT T R̃T T + vT LR̃T L)

− aV (vT ′R̃T ′ + vT L′R̃T L′
)], (27)
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FIG. 8. (Color online) Asymmetry Aexcl for the case of a proton
in the 1p1/2 shell in 16O. The kinematics are fixed to q = 0.5 GeV/c

and ω = 0.132 GeV, and two values for the scattering angle have been
selected: θe = 15◦ (forward scattering, left panels) and θe = 140◦

(backward, right panels). Coplanar kinematics are used, i.e., φN = 0◦.
The top (bottom) panels refer to results evaluated with the NCC1
(NCC2) prescriptions. In each case we compare the asymmetry
corresponding to the RPWIA, RPWIA-uu, RDWIA, and EMA
approaches. FSI have been evaluated using the EDAI-O potential.

where we have introduced the functionG2 ≈ vLRL + vT RT +
vT T RT T + vT LRT L.2

The purely EM contribution, AEM
excl, is simply given by the

fifth response function RT L′
:

AEM
excl = vT L′RT L′

G2
. (28)

Note that RT L′
only enters when FSI are incorporated in the

analysis (RT L′ = 0 in RPWIA). Moreover, the dependence
on the azimuthal angle φN is simply given through sin φN ,
i.e., in the limit of coplanar kinematics, φN = 0◦, 180◦, the
helicity asymmetry differing from zero is solely due to the
weak interaction.

In what follows we present a brief analysis of the helicity
asymmetry showing the results obtained for different kinemat-
ics and evaluating the role of FSI. We also analyze the effects
associated with the lower components in the relativistic wave
functions and with the particular choice of the nucleon current
operator. Our interest is to determine under which conditions
the “exclusive” helicity asymmetry can be appropriate to get
information on the PV response functions

1. Coplanar kinematics: φN = 0

For coplanar kinematics the helicity asymmetry reduces
to Aexcl = AWNC

excl . In Fig. 8 we present the asymmetry
corresponding to the case of protons in the 1p1/2 shell in
16O. As in previous sections, the kinematics have been fixed to
q = 500 MeV, ω = 132 MeV, and φN = 0 and two values

2We have neglected in G2 the very small contribution given by the
PV responses.
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for the scattering angle: θe = 15◦ (forward scattering, left
panels), and θe = 140◦ (backward angles, right panels). The
top (bottom) panels show results for the Landau gauge and the
CC1 (CC2) current.

RPWIA results are shown with black lines (fully relativistic
responses) and blue lines (positive-energy projection). The
comparison between the two approaches clearly shows the
role played by the lower components in the bound nucleon
wave function. In the region of the missing momentum where
the responses attain their maximum values, i.e., 50 < p <
200 MeV, the asymmetry does show a tiny sensitivity with the
momentum, leading both approaches, RPWIA and projected,
to rather similar results. On the contrary, for higher values,
p � 250 MeV, the relative contribution of the lower (negative-
energy) components starts to increase, causing significant
departures in the various curves. This result applies for both
of the scattering angles selected.

Concerning the effects linked to the choice of the current
operator, i.e., NCC1 versus NCC2, the differences are negli-
gible within the projected-energy approach. However, these
discrepancies get higher when the contribution coming from
the lower-energy components is included. This is particularly
true for large missing momenta and it is basically given
by the interference uv terms. Notice that the discrepancy
between the curves can reach a factor ∼4 in the case of
forward kinematics and ∼2 at backward. Moreover, the lower
components are responsible of the oscillating behavior shown
by the asymmetry.

Figure 8 also contains the results obtained with FSI. Here
we distinguish the fully relativistic distorted (RDWIA) calcu-
lation (red lines) from the effective momentum approximation
(EMA) (green lines), i.e., projecting over positive-energy
components both the bound and the scattered nucleon wave
functions. From the comparison between RPWIA, RDWIA,
and EMA results we observe that at p ∼ 0.1 MeV (maxima
in the responses) the three approaches lead to very similar
results. Although not shown, this comment also applies
to results obtained with other gauges. To conclude, let us
note the important role played by FSI and its dependence
on the particular description used to describe such effects:
see the comparison between RDWIA and EMA. The most
sensitive region occurs at high missing momenta (the region
where the responses, and likewise the cross section, are very
small).

The general conclusions reached from results in Fig. 8 can
be extended to other values of the transferred momentum and
energy close to the QE peak.

2. Non-co-planar kinematics: φN �= 0

As already mentioned in previous sections, the so-called
fifth, purely EM response RT L′

only enters into the analysis
of (�e,e′N ) reactions when FSI are incorporated. Moreover,
this response contributes only for non-co-planar kinematics
because its dependence with the azimuthal angle is simply
given through sin φN . The determination of the fifth response
is also linked to the measurement of the incident electron
helicity. Therefore, its contribution to the helicity asymmetry
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FIG. 9. (Color online) Exclusive helicity asymmetry for the p1/2

shell (protons) in 16O. Results correspond to RDWIA and NCC2
prescription. The azimuthal angle has been fixed to φN = 0.01◦ (top
panels) and φN = 0.001◦ (bottom). Forward and backward kinemat-
ics have been explored in the left and right panels, respectively.

can be very relevant, in particular, much more important than
the contribution coming from the PV responses.

This problem is considered in the discussion that follows.
We consider different kinematical regimes and analyze the
impact that the fifth EM response may have in the asymmetry,
comparing its particular contribution with the one ascribed
to the PV responses. The purely EM responses, including
RT L′

, are several orders of magnitude bigger than the PV ones.
Hence, we have considered specific situations, very close to
the strictly coplanar kinematics, where both the purely EM
and the WNC sectors may lead to similar contributions to the
helicity asymmetry. The interest in this study is to determine
what level of precision should be required on the azimuthal
angle φN in order to isolate in the asymmetry the particular
contribution associated with the PV responses. To simplify the
discussion, in what follows all results have been obtained with
the prescription NCC2. Similar conclusions are drawn from
the use of NCC1.

In the top panels of Fig. 9 we show Aexcl (black solid
line) at φN = 0.01◦ and the separate contributions: AEM

excl
(red dashed-dotted line) and AWNC

excl (blue dashed line). This
situation is rather close to coplanar kinematics and, as shown
in the figure, the purely EM contribution clearly dominates
both at forward (left panel) and backward (right) kinematics.
The bottom panels show the results corresponding to an
even smaller azimuthal angle, φN = 0.001◦. In this case,
because of the sin φN dependence in the fifth response, the
PV contribution is dominant, and here the purely EM one is
roughly one order of magnitude smaller. It is interesting to
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point out that, contrary to AEM
excl, the interference contribution

AWNC
excl does not show sensitivity with φN (in the case of

very small φN values). On the other hand, AEM
excl presents a

much stronger sensitivity with the missing momentum, being
responsible for the general “oscillating” behavior shown by
the helicity asymmetry.

From this general analysis one concludes that the measure-
ment of the “exclusive” helicity asymmetry cannot provide
information on the PV responses unless the kinematics can
be fixed with an azimuthal angle of the order of 1/1000 of
a degree or less. In any other situation, the asymmetry only
shows effects associated with the purely EM responses.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied PV effects in exclusive
A(�e,e′N )B processes in the QE regime. Our main interest
has been to explore new observables that may allow us to get
new information on the nucleon structure. In particular, PVQE
reactions on complex nuclei can provide information on the
WNC form factors that complements the one obtained from
other processes such as elastic scattering off protons, elastic,
and QE electron scattering off helium [28,29] and deuterium
[30], neutrino scattering, and so on.

In this paper we have focused on the exclusive scattering
process, A(�e,e′N )B, in which both the scattered electron and
the ejected nucleon are detected in coincidence. Although
being aware of the sifnificant difficulties in getting information
on PV responses due to the presence of the so-called fifth
EM response function, its general study can be considered
as a first step in the analysis of PVQE inclusive (�e,e′)
processes. Moreover, it can also provide additional information
associated with the off-shell properties of the nucleons and
dynamical relativistic effects, which can be of great interest in
the discussion of PV (�e,e′) observables. Therefore, in Sec. II
we presented in detail the kinematics and general formalism
needed to compute the exclusive differential cross section and
its decomposition into response functions. This section also
contains a careful discussion of the impulse approximation
(IA) and the particular models we have considered. Finally,
a complete analytical calculation of the PV nuclear tensors
(likewise for the responses) within the RPWIA is presented in
Sec. II A.

In Sec. III the results corresponding to the exclusive observ-
ables are presented and analyzed. First, off-shell effects in the
interference responses are considered within the framework
of the RPWIA. The single-nucleon interference responses
are evaluated by isolating the different energy-projection
contributions: uu, uv, and vv. Moreover, the two usual
prescriptions for the nucleon (vector) current, i.e., CC1 and
CC2, have been used, and for the longitudinal channel, results
are shown for the three gauges: Landau, Coulomb, and Weyl.
This analysis has been extended to the hadronic responses
that are given as the product of the single-nucleon responses
and the momentum distributions of the nucleon. Most of our
conclusions concerning off-shell effects are consistent with
those reported in Ref. [9] for the EM responses. We may
summarize our main findings as follows:

(i) The use of the CC1 current tends to magnify relativistic
dynamical effects, i.e., the contribution linked to the
lower components in the nucleon wave function.
Differences between CC1 and CC2 results come from
the vv and, particularly, from the uv contributions.
Notice that the momentum distribution Nvv is several
orders of magnitude smaller than Nuv .

(ii) Responses evaluated with the Landau and Coulomb
gauges are very similar. On the contrary, the Weyl
gauge leads to very significant differences that, for
some kinematics, are not consistent with data for the
EM responses. Therefore, most of the results shown in
this work correspond to the Landau gauge.

We have analyzed the effects introduced by FSI in the
PV responses and have computed the helicity asymmetry
associated with the exclusive process. The analysis of the weak
interaction through PV electron scattering requires observables
whose existence should be unequivocally linked to such
interactions. This is the case of the helicity asymmetry defined
for elastic PV electron-proton scattering as well as for QE
(�e,e′) reactions. However, the situation is more delicate in the
case of coincidence (�e,e′N ) processes. Here FSI give rise to the
so-called fifth EM response, RT L′

, that enters into the analysis
of the process when the incident electron helicity is measured.
Moreover, its angular dependence is given through sin φN ,
and, hence, it only appears for out-of-plane (non-co-planar)
kinematics. This means that, unless the angle φN is very close
to 0 or π (to an accuracy higher than 1/1000 of a degree),
the helicity asymmetry is completely dominated by the EM
interaction; hence, barring such extreme circumstances, it
cannot provide information on the PV responses associated
with the weak interaction.
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APPENDIX: RELATIVISTIC PLANE-WAVE IMPULSE
APPROXIMATION

In this Appendix we show in detail the calculation of the
hadronic tensors and responses that enter into the analysis of
(�e,e′N ) reactions within the RPWIA. The general procedure
was originally developed in Ref. [9] in the case of unpolarized
EM responses and later extended to the study of EM polarized
observables [13,22]. Here we follow a similar procedure and
we apply the general formalism to the analysis of PV electron
scattering. We isolate the contribution ascribed to the positive-
and negative-energy components in the bound nucleon wave
function and show results for the two usual prescriptions of
the current operator: CC1 and CC2.
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Within RPWIA the hadronic tensors can be given in the
general form:

Wμν =
∑

I

∑
F

[
J

μ
EM

]∗[
J ν

EM

]
= e2

∑
mj

∑
sN

[
u(pN,sN )Ĵ μ

EM �
mj

k (p)
]∗

× [
u(pN,sN )Ĵ ν

EM �
mj

k (p)
]
, (A1)

W̃μν =
∑

I

∑
F

[
J

μ
EM

]∗[
J ν

WNC

]
= eg

4 cos θW

∑
mj

∑
sN

[
u(pN,sN )Ĵ μ

EM �
mj

k (p)
]∗

× [
u(pN,sN )Ĵ ν

WNC �
mj

k (p)
]
. (A2)

The current matrix elements can be decomposed by using
the completness relation:

(Jμ)u =
∑

S

u(pN,sN )Ĵ μu(p,S)
[
u(p,S)�

mj

k (p)
]
, (A3)

(Jμ)v =
∑

S

u(pN,sN )Ĵ μv(p,S)
[
v(p,S)�

mj

k (p)
]
, (A4)

where the first term, labeled with the index u, comes
from the coupling of the bound nucleon wave function
with the positive-energy Dirac spinors u(p,S), and the sec-
ond one, v, is linked to the negative-energy Dirac spinors
v(p,S).

Proceeding in this way the purely EM and PV hadronic
tensors can be separated into three terms: Wμν = W

μν
P +

W
μν
C + W

μν
N , where W

μν
P (Wμν

N ) is the contribution from
positive-energy (negative-energy) projections only, while W

μν
C

is a crossed term containing products of both positive- and
negative-energy projections. Following the general arguments
presented in Ref. [9] and introducing the functions associated
with the upper or lower components in the bound nucleon wave
function in momentum space:

αk(p) = gk(p) − p

E + MN

Skfk(p), (A5)

βk(p) = p

E + MN

gk(p) − Skfk(p), (A6)

we can finally express the different contributions to the
hadronic tensors in the form:

W
μν
P = e2 E + MN

MN

|αk(p)|2
16π︸ ︷︷ ︸

Nuu(p)

∑
sN s

[
u(pN,sN )Ĵ μ

EMu(p,S)
]∗[

u(pN,sN )Ĵ ν
EMu(p,S)

]
︸ ︷︷ ︸

Wμν

= e2Nuu(p) Wμν, (A7)

W
μν
N = e2 E + MN

MN

|βk(p)|2
16π︸ ︷︷ ︸

Nvv(p)

∑
sN s

[
u(pN,sN )Ĵ μ

EMv(p,S)
]∗[

u(pN,sN )Ĵ ν
EMv(p,S)

]
︸ ︷︷ ︸

Zμν

= e2Nvv(p) Zμν, (A8)

W
μν
C = e2

Nuv (p)︷ ︸︸ ︷(
− E + MN

MN

)
αk(p)βk(p)

8π

∑
ss ′

1

2

{
〈s ′|σ · p

p
|s〉

∑
sN

[[
u(pN,sN )Ĵ μ

EMu(p,S)
]∗[

u(pN,sN )Ĵ ν
EMv(p,S ′)

]
+ [

u(pN,sN )Ĵ μ
EMv(p,S)

]∗[
u(pN,sN )Ĵ ν

EMu(p,S ′)
]]}

= e2Nuv(p) N μν. (A9)

A similar decomposition holds for the WNC hadronic tensor:

W̃
μν
P =

(
eg

4 cos θW

)
Nuu(p) W̃μν, (A10)

W̃
μν
N =

(
eg

4 cos θW

)
Nvv(p) Z̃μν, (A11)

W̃
μν
C =

(
eg

4 cos θW

)
Nuv(p) Ñ μν, (A12)

where the single-nucleon tensors W̃μν , Z̃μν , and Ñ μν are defined in a similar way to the purely EM ones (Wμν , Zμν , N μν) given
in Eqs. (A7)–(A9), but interchanging one of the purely EM nucleon current matrix element with the corresponding WNC one.

In what follows we evaluate the explicit expressions for the PV single-nucleon tensors. We consider both CC1 and CC2
prescriptions for the vector part in the weak current. The purely EM tensors have been already presented in previous work [9],
hence, here we restrict our attention to the WNC tensors. To simplify the analysis we separate the positive, negative, and crossed
contributions.

045503-12



PARITY VIOLATION AND DYNAMICAL RELATIVISTIC . . . PHYSICAL REVIEW C 91, 045503 (2015)

1. Positive-energy tensor: uu contribution

In this case the interference single-nucleon tensor is given by the following trace:

W̃μν = [W̃μν
V + W̃μν

A

] = 1

4M2
N

Tr
[
Ĵ

μ
EM( �PN + MN )

(
Ĵ ν

WNC,V + Ĵ ν
WNC,A

)
( �P + MN )

]
. (A13)

The following expressions are obtained for the two prescriptions of the vector term in the weak current.

a. CC1 vector contribution

W̃μν
V = S̃μν

V,uu = 1

M2
N

{
(F1 + F2)(F̃1 + F̃2)

(
P

μ
P ν

N + P
ν
P

μ
N + Q

2

2
gμν

)

+ 1

2

[
F2F̃2

(
1 − Q

2

4M2
N

)
− F2(F̃1 + F̃2) − F̃2(F1 + F2)

]
CμCν

}
. (A14)

b. CC2 Vector contribution

Contrary to the previous case, here the tensor has both symmetric and antisymmetric parts:

W̃μν
V = S̃μν

V,uu + Ãμν
V,uu. (A15)

The symmetric tensor is

S̃μν
V,uu = 1

M2
N

(
F1F̃1

[
P

μ
P ν

N + P
ν
P

μ
N + Q

2

2
gμν

]
+ F1F̃2 + F2F̃1

2
gμνQQ −

[
F1F̃2

4
(Q

μ
Qν + Q

ν
Qμ)

+ F2F̃1

4
(Q

ν
Qμ + Q

μ
Qν)

]
+ F2F̃2

4M2
N

{
PNQ(P

ν
Qμ + P

μ
Qν) + PQ

(
P

μ
N Qν + P ν

NQμ
) − Q2(P μ

N P
ν + P ν

NP
μ)

−QμQν

(
2M2

N − Q
2

2

)
+ gμν

[
Q2

(
2M2

N − Q
2

2

)
− 2(PNQ)(PQ)

]})
, (A16)

and the antisymmetric one is

Ãμν
V,uu = −

[
F1F̃2

4
(Q

μ
Qν − Q

ν
Qμ) + F2F̃1

4
(Q

ν
Qμ − Q

μ
Qν)

]
. (A17)

c. CC1 axial contribution

W̃μν
A = Ãμν

A,uu = i

M2
N

(F1 + F2)Ge
A εμναβP αPN,β . (A18)

d. CC2 axial contribution

Again, symmetric and antisymmetric parts contribute to the whole single-nucleon tensor:

W̃μν
A = S̃μν

A,uu + Ãμν
A,uu (A19)

with

S̃μν
A,uu = i

M2
N

[
F2

4M2
N

G̃p(Qνεμαβδ + Qμεναβδ)P αPN,βQδ

]
, (A20)

Ãμν
A,uu = i

M2
N

{
εμναβGe

A

[
F2

2
(PN + P )αQβ + F1P αPN,β

]
+ F2

4M2
N

G̃p(Qνεμαβδ − Qμεναβδ)P αPN,βQδ

}
. (A21)
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2. Negative-energy tensor: vv contribution

In this case the general expression for the single-nucleon tensor in terms of traces reads:

Z̃μν = 1

4M2
N

Tr
[
Ĵ

μ
EM( �PN + MN )Ĵ ν

WNC( �P − MN )
]
. (A22)

The following explicit expressions are obtained.

a. CC1 vector contribution

It presents symmetric and antisymmetric terms,

Z̃μν
V = S̃μν

V,vv + Ãμν
V,vv (A23)

with

S̃μν
V,vv = 1

M2
N

{
(F1 + F2)(F̃1 + F̃2)

[
P

μ
P ν

N + P
ν
P

μ
N − (P + PN )2

2
gμν

]
− F2F̃2

8M2
N

Q
2
(P + PN )μ(P + PN )ν

+ F̃2(F1 + F2) + F2(F̃1 + F̃2)

2

(
P

μ
N P ν

N − P
μ
P

ν)}
, (A24)

Ãμν
V,vv = 1

M2
N

[
F̃2F1 − F2F̃1

2

(
P

μ
N P

ν − P ν
NP

μ)]
. (A25)

b. CC2 vector contribution

In this case the symmetric and antisymmetric parts of the tensor are

S̃μν
V,vv = 1

M2
N

(
F1F̃1

[
P

μ
P ν

N + P
ν
P

μ
N − (P + PN )2

2
gμν

]
+ F1F̃2 + F2F̃1

4
[Qμ(P + PN )ν + Qν(P + PN )μ − 2Q(P + PN )gμν]

+ F2F̃2

4M2
N

{
PNQ(P

μ
Qν + P

ν
Qμ) + PQ

(
P

μ
N Qν + P ν

NQμ
) + Q

2

2
QμQν − Q2

(
P

μ
N P

ν + P ν
NP

μ)
− gμν

[
Q

2
Q2

2
+ 2(PNQ)(PQ)

]})
, (A26)

Ãμν
V,vv = 1

M2
N

{
F1F̃2 − F2F̃1

4
[Qμ(P + PN )ν − Qν(P + PN )μ]

}
. (A27)

c. CC1 axial contribution

Here the result coincides with the expression already obtained for the CC1 axial contribution in the case of the purely
positive-energy tensor in Eq. (A18).

d. CC2 axial contribution

Its symmetric and antisymmetric parts, Z̃μν
A = S̃μν

A,vv + Ãμν
A,vv , are given by

S̃μν
A,vv = i

M2
N

[
F2G̃p

4M2
N

(Qνεμαβδ + Qμεναβδ)P αPN,βQδ

]
,

(A28)

Ãμν
A,vv = i

M2
N

{
εμναβGe

A

[
F2

2
(P − PN )αQβ + F1P αPN,β

]
+ F2G̃p

4M2
N

(Qνεμαβδ − Qμεναβδ)P αPN,βQδ

}
. (A29)
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3. Crossed tensor: uv contribution

The nondiagonal spin single-nucleon tensorN μν that enters into the evaluation of the crossed uv hadronic tensor can be written
in terms of a diagonal tensor constructed from spinors quantized with respect to a spin axis pointing along a generic direction,
Rμν(θR,φR). This is the spin precession technique that has presented in detail in Refs. [9,31]. Here we simply summarize the
main results applied specifically to the case of the PV response functions.

In general, we can write

N μν = Rμν(0,0) cos θ +
[
Rμν

(
π

2
,0

)
cos φ + Rμν

(
π

2
,
π

2

)
sin φN

]
sin θ, (A30)

where θ , φN are the angles defining the direction of the bound nucleon momentum p and the tensor Rμν is given in the general
form

Rμν(θR,φR) = 1

4MN

Tr
[�SLĴ

μ
EM( �PN + MN )Ĵ ν

WNC

]
(A31)

with Ĵ
μ
EM (Ĵ μ

WNC) the purely EM (WNC) current operators. Isolating the vector and axial contributions in the WNC operator, and
after some algebra, the following results are obtained for the two prescriptions of the vector current.

a. Vector interference contribution

(i) CC1 prescription: The single-nucleon tensor has symmetric and antisymmetric parts,

R̃μν
V = S̃μν

V,uv + Ãμν
V,uv (A32)

with

S̃μν
V,uv = 1

MN

{
(F1 + F2)(F̃1 + F̃2)

[
S

μ
LP ν

N + Sν
LP

μ
N − (PNSL)gμν

] + F2F̃2

4M2
N

(PNSL)(P + PN )μ(P + PN )ν

− F2(F̃1 + F̃2) + F̃2(F1 + F2)

4

[
(P + PN )μSν

L + (P + PN )νSμ
L

]}
(A33)

and

Ãμν
V,uv = 1

MN

{
−F2(F̃1 + F̃2) − F̃2(F1 + F2)

4

[
(P + PN )μSν

L − (P + PN )νSμ
L

]}
. (A34)

(ii) CC2 prescription: Likewise, the symmetric and antisymmetric parts result:

S̃μν
V,uv = 1

MN

(
F1F̃1

[
S

μ
LP ν

N + Sν
LP

μ
N − (PNSL)gμν

] − F1F̃2 + F̃1F2

2
(QSL)gμν + F1F̃2 + F2F̃1

4

(
QμSν

L + QνS
μ
L

)
+ F2F̃2

4M2
N

{
PNQ

(
S

μ
LQν + Sν

LQμ
) + SLQ

(
P

μ
N Qν + P ν

NQμ
) − Q2(P μ

N Sν
L + P ν

NS
μ
L

)
− (PNSL)QμQν + gμν[Q2PNSL − 2(PNQ)(SLQ)]

})
(A35)

and

Ãμν
V,uv = 1

MN

[
F1F̃2 − F2F̃1

4

(
QμSν

L − QνS
μ
L

)]
. (A36)

b. Axial interference

In this case the expressions for the tensor can be cast as follows:

(i) CC1 prescription

R̃μν
A = Ãμν

A,uv = − i

MN

(F1 + F2)Ge
AεμναβPN,αSL,β (A37)
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GONZÁLEZ-JIMÉNEZ, CABALLERO, AND DONNELLY PHYSICAL REVIEW C 91, 045503 (2015)

(ii) CC2 prescription: The symmetric term is

Ãμν
A,uv =− i

MN

[
Ge

Aεμναβ

(
F1PN,α + F2

2
Qα

)
SL,β − F2G̃P

4M2
N

(Qνεμαβδ + Qμεναβδ)QαPN,βSL,δ

]
, (A38)

and the antisymmetric one

S̃μν
A,uv =− i

MN

[
−F2G̃P

4M2
N

(Qνεμαβδ − Qμεναβδ)QαPN,βSL,δ

]
. (A39)
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[4] R. González-Jiménez, M. V. Ivanov, M. B. Barbaro, J. A.

Caballero, and J. M. Udı́as, Phys. Lett. B 718, 1471 (2013).
[5] G. D. Megias, J. E. Amaro, M. Barbaro, J. Caballero, and

T. Donnelly, Phys. Lett. B 725, 170 (2013).
[6] M. J. Musolf and B. R. Holstein, Phys. Lett. B 242, 461 (1990).
[7] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C 47, 2924 (1993).
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