656 research outputs found

    Monte Carlo Study of Supernova Neutrino Spectra Formation

    Get PDF
    The neutrino flux and spectra formation in a supernova core is studied by using a Monte Carlo code. The dominant opacity contribution for nu_mu and nu_tau is elastic scattering on nucleons. In addition we switch on or off a variety of processes which allow for the exchange of energy or the creation and destruction of neutrino pairs, notably nucleon bremsstrahlung, the e^+ e^- pair annihilation process and nu_e-bar nu_e -> nu_{mu,tau} nu_{mu,tau}-bar, recoil and weak magnetism in elastic nucleon scattering, elastic scattering on electrons and positrons and elastic scattering on electron neutrinos and anti-neutrinos. The least important processes are neutrino-neutrino scattering and e^+ e^- annihilation. The formation of the spectra and fluxes of nu_mu is dominated by the nucleonic processes, i.e. bremsstrahlung and elastic scattering with recoil, but also nu_e nu_e-bar annihilation and nu_mu e^\pm scattering contribute significantly. When all processes are included, the spectral shape of the emitted neutrino flux is always ``pinched,'' i.e. the width of the spectrum is smaller than that of a thermal spectrum with the same average energy. In all of our cases we find that the average nu_mu-bar energy exceeds the average nu_e-bar energy by only a small amount, 10% being a typical number. Weak magnetism effects cause the opacity of nu_mu to differ slightly from that of nu_mu-bar, translating into differences of the luminosities and average energies of a few percent. Depending on the density, temperature, and composition profile, the flavor-dependent luminosities L_{nu_e}$, L_{nu_e-bar}, and L_{nu_mu} can mutually differ from each other by up to a factor of two in either direction.Comment: 33 pages, 16 eps-figs, submitted to ApJ. Sections added: weak magnetism, discussion of different analytic fits to the spectra and detailed spectral shap

    Prompt merger collapse and the maximum mass of neutron stars

    Full text link
    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent, nuclear equations of state, and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a non-rotating star in isolation by between 30 and 70 per cent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the non-rotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Ledoux-Convection in Protoneutron Stars --- a Clue to Supernova Nucleosynthesis?

    Get PDF
    Two-dimensional hydrodynamical simulations of the deleptonization of a newly formed neutron star were performed. Driven by negative lepton fraction and entropy gradients, convection starts near the neutrinosphere about 20-30 ms after core bounce, but moves deeper into the protoneutron star, and after about one second the whole protoneutron star is convective. The deleptonization of the star proceeds much faster than in the corresponding spherically symmetrical model because the lepton flux and the neutrino luminosities increase by up to a factor of two. The convection below the neutrinosphere raises the neutrinospheric temperatures and mean energies of the emitted neutrinos by 10-20%. This can have important implications for the supernova explosion mechanism and changes the detectable neutrino signal from the Kelvin-Helmholtz cooling of the protoneutron star. In particular, the enhanced electron neutrino flux relative to the electron antineutrino flux during the early post-bounce evolution might solve the overproduction problem of certain elements in the neutrino-heated ejecta in models of type-II supernova explosions.Comment: 17 pages, LaTeX, 8 postscript figures, uses epsf.sty. To appear in ApJ 473 (Letters), 1996 December 1

    2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores

    Get PDF
    We perform axisymmetric (2D) multi-angle, multi-group neutrino radiation-hydrodynamic calculations of the postbounce phase of core-collapse supernovae using a genuinely 2D discrete-ordinate (S_n) method. We follow the long-term postbounce evolution of the cores of one nonrotating and one rapidly-rotating 20-solar-mass stellar model for ~400 milliseconds from 160 ms to ~550 ms after bounce. We present a multi-D analysis of the multi-angle neutrino radiation fields and compare in detail with counterpart simulations carried out in the 2D multi-group flux-limited diffusion (MGFLD) approximation to neutrino transport. We find that 2D multi-angle transport is superior in capturing the global and local radiation-field variations associated with rotation-induced and SASI-induced aspherical hydrodynamic configurations. In the rotating model, multi-angle transport predicts much larger asymptotic neutrino flux asymmetries with pole to equator ratios of up to ~2.5, while MGFLD tends to sphericize the radiation fields already in the optically semi-transparent postshock regions. Along the poles, the multi-angle calculation predicts a dramatic enhancement of the neutrino heating by up to a factor of 3, which alters the postbounce evolution and results in greater polar shock radii and an earlier onset of the initially rotationally weakened SASI. In the nonrotating model, differences between multi-angle and MGFLD calculations remain small at early times when the postshock region does not depart significantly from spherical symmetry. At later times, however, the growing SASI leads to large-scale asymmetries and the multi-angle calculation predicts up to 30% higher average integral neutrino energy deposition rates than MGFLD.Comment: 20 pages, 21 figures. Minor revisions. Accepted for publication in ApJ. A version with high-resolution figures may be obtained from http://www.stellarcollapse.org/papers/Ott_et_al2008_multi_angle.pd

    Electron Neutrino Pair Annihilation: A New Source for Muon and Tau Neutrinos in Supernovae

    Full text link
    We show that in a supernova core the annihilation process nu_e nu_e-bar -> nu_{mu,tau} nu_{mu,tau}-bar is always more important than the traditional reaction e^+ e^- -> nu_{mu,tau} nu_{mu,tau}-bar as a source for muon and tau neutrino pairs. We study the impact of the new process by means of a Monte Carlo transport code with a static stellar background model and by means of a self-consistent hydrodynamical simulation with Boltzmann neutrino transport. Nucleon bremsstrahlung NN -> NN nu_{mu,tau} nu_{mu,tau}-bar is also included as another important source term. Taking into account nu_e nu_e-bar -> nu_{mu,tau} nu_{mu,tau}-bar increases the nu_mu and nu_tau luminosities by as much as 20% while the spectra remain almost unaffected. In our hydrodynamical simulation the shock was somewhat weakened. Elastic nu_{mu,tau} nu_e and nu_{mu,tau} nu_e scattering is not negligible but less important than nu_{mu,tau} e^+ or e^- scattering. Its influence on the nu_{mu,tau} fluxes and spectra is small after all other processes have been included.Comment: 11 pages, 9 eps-figs, submitted to Ap

    Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling

    Full text link
    An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical symmetry consistently from collapse through explosion to nearly complete deleptonization of the forming neutron star. The evolution time of about 9 s is short because of nucleon-nucleon correlations in the neutrino opacities. After a brief phase of accretion-enhanced luminosities (~200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of electron antineutrinos and muon/tau antineutrinos very similar. We discuss consequences for the neutrino-driven wind as a nucleosynthesis site and for flavor oscillations of SN neutrinos.Comment: 4 pages, 4 eps figures; published as Physical Review Letters, vol. 104, Issue 25, id. 25110

    Explosion Mechanisms of Core-Collapse Supernovae

    Full text link
    Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of ONeMg-core and some Fe-core progenitors. The characteristics of the neutrino emission from new-born neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from two to three dimensions, more realism, new perspectives, and hopefully answers to long-standing questions are coming into reach.Comment: 35 pages, 11 figures (29 eps files; high-quality versions can be obtained upon request); accepted by Annual Review of Nuclear and Particle Scienc

    Neutrino-driven Explosions

    Full text link
    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. A solution is crucial for deciphering the SN phenomenon, for predicting observable signals such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational waves, for defining the role of SNe in the evolution of galaxies, and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the SN in the explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core-bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN blast. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next Galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 54 pages, 13 figure
    • 

    corecore