5,606 research outputs found

    An exactly solvable toy model that mimics the mode coupling theory of supercooled liquid and glass transition

    Full text link
    A toy model is proposed which incorporates the reversible mode coupling mechanism responsible for ergodic-nonergodic transition with trivial Hamiltonian in the mode coupling theory (MCT) of structural glass transition. The model can be analyzed without relying on uncontrolled approximations inevitable in the current MCT. The strength of hopping processes can be easily tuned and the ideal glass transition is reproduced only in a certain range of the strength. On the basis of the analyses of our model we discuss about a sharp ergodic-nonergodic transition and its smearing out by "hopping".Comment: 5 pages, 2 ps-figures, inappropriate terms replace

    Applications of ion implantation to high performance, radiation tolerant silicon solar cells

    Get PDF
    Progress in the development of ion implanted silicon solar cells is reported. Effective back surface preparation by implantation, junction processing to achieve high open circuit voltages in low-resistivity cells, and radiation tolerance cells are among the topics studied

    The 2MASS Wide-Field T Dwarf Search. II. Discovery of Three T Dwarfs in the Southern Hemisphere

    Full text link
    We present the discovery of three new Southern Hemisphere T dwarfs identified in the Two Micron All Sky Survey. These objects, 2MASS 0348-6022, 2MASS 0516-0445, and 2MASS 2228-4310, have classifications T7, T5.5, and T6.5, respectively. Using linear absolute magnitude/spectral type relations derived from T dwarfs with measured parallaxes, we estimate spectrophotometric distances for these discoveries; the closest, 2MASS 0348-6022, is likely within 10 pc of the Sun. Proper motions and estimated tangential velocities are consistent with membership in the Galactic disk population. We also list Southern Hemisphere T dwarf candidates that were either not found in subsequent near-infrared imaging observations and are most likely uncatalogued minor planets, or have near-infrared spectra consistent with background stars.Comment: 12 pages including 4 figures (one as jpeg), accepted to A

    Is intra-abdominal hypertension a missing factor that drives multiple organ dysfunction syndrome?

    Get PDF
    In a recent issue of Critical Care, Cheng and colleagues conducted a rabbit model study that demonstrated that intra-abdominal hypertension (IAH) may damage both gut anatomy and function. With only 6 hours of IAH at 25 mmHg, these authors observed an 80% reduction in mucosal blood flow, an exponential increase in mucosal permeability, and erosion and necrosis of the jejunal villi. Such dramatic findings should remind all caring for the critically ill that IAH may severely damage the normal gut barrier functions and thus may be reasonably expected to facilitate bacterial and mediator translocation. The potential contribution of IAH as a confounding factor in the efficacy of selective decontamination of the digestive tract should be considered

    Heteroepitaxy of deposited amorphous layer by pulsed electron-beam irradiation

    Get PDF
    We demonstrate that a single short pulse of electron irradiation of appropriate energy is capable of recrystallizing epitaxially an amorphous Ge layer deposited on either or Si single-crystal substrate. The primary defects observed in the case were dislocations, whereas stacking faults were observed in samples

    Energy versus electron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films

    Get PDF
    In this paper, we compare the photophysics and photovoltaic device performance of two indenofluorene based polymers: poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-4,7-(2,1,3-benzothiodiazole] (IF8BT) and poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-5,5-(40,70-di-2-thienyl-20,10,30-benzothiodiazole] (IF8TBTT) blended with [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Photovoltaic devices made with IF8TBTT exhibit greatly superior photocurrent generation and photovoltaic efficiency compared to those made with IF8BT. The poor device efficiency of IF8BT/PCBM devices is shown to result from efficient, ultrafast singlet F€orster energy transfer from IF8BT to PCBM, with the resultant PCBM singlet exciton lacking sufficient energy to drive charge photogeneration. The higher photocurrent generation observed for IF8TBTT/PCBM devices is shown to result from IF8TBTT’s relatively weak, red-shifted photoluminescence characteristics, which switches off the polymer to fullerene singlet energy transfer pathway. As a consequence, IF8TBTT singlet excitons are able to drive charge separation at the polymer/fullerene interface, resulting in efficient photocurrent generation. These results are discussed in terms of the impact of donor/acceptor energy transfer upon photophysics and energetics of charge photogeneration in organic photovoltaic\ud devices. The relevance of these results to the design of polymers for organic photovoltaic applications is also discussed, particularly with regard to explaining why highly luminescent polymers developed for organic light emitting diode applications often give relatively poor performance in organic photovoltaic devices

    Keck Imaging of Binary L Dwarfs

    Get PDF
    We present Keck near-infrared imaging of three binary L dwarf systems, all of which are likely to be sub-stellar. Two are lithium dwarfs, and a third exhibits an L7 spectral type, making it the coolest binary known to date. All have component flux ratios near 1 and projected physical separations between 5 and 10 AU, assuming distances of 18 to 26 pc from recent measurements of trigonometric parallax. These surprisingly similar binaries represent the sole detections of companions in ten L dwarf systems which were analyzed in the preliminary phase of a much larger dual-epoch imaging survey. The detection rate prompts us to speculate that binary companions to L dwarfs are common, that similar-mass systems predominate, and that their distribution peaks at radial distances in accord both with M dwarf binaries and with the radial location of Jovian planets in our own solar system. To fully establish these conjectures against doubts raised by biases inherent in this small preliminary survey, however, will require quantitative analysis of a larger volume-limited sample which has been observed with high resolution and dynamic range.Comment: LaTex manuscript in 13 pages, 3 postscript figures, Accepted for publication in the Letters of the Astrophysical Journal; Postscript pre-print version available at: http://www.hep.upenn.edu/PORG/papers/koerner99a.p

    Improved Stack-Slide Searches for Gravitational-Wave Pulsars

    Full text link
    We formulate and optimize a computational search strategy for detecting gravitational waves from isolated, previously-unknown neutron stars (that is, neutron stars with unknown sky positions, spin frequencies, and spin-down parameters). It is well known that fully coherent searches over the relevant parameter-space volumes are not computationally feasible, and so more computationally efficient methods are called for. The first step in this direction was taken by Brady & Creighton (2000), who proposed and optimized a two-stage, stack-slide search algorithm. We generalize and otherwise improve upon the Brady-Creighton scheme in several ways. Like Brady & Creighton, we consider a stack-slide scheme, but here with an arbitrary number of semi-coherent stages and with a coherent follow-up stage at the end. We find that searches with three semi-coherent stages are significantly more efficient than two-stage searches (requiring about 2-5 times less computational power for the same sensitivity) and are only slightly less efficient than searches with four or more stages. We calculate the signal-to-noise ratio required for detection, as a function of computing power and neutron star spin-down-age, using our optimized searches.Comment: 19 pages, 7 figures, RevTeX

    Phase diagram of glassy systems in an external field

    Full text link
    We study the mean-field phase diagram of glassy systems in a field pointing in the direction of a metastable state. We find competition among a ``magnetized'' and a ``disordered'' phase, that are separated by a coexistence line as in ordinary first order phase transitions. The coexistence line terminates in a critical point, which in principle can be observed in numerical simulations of glassy models.Comment: 4 pages, 5 figure
    • …
    corecore