29,523 research outputs found

    Period halving of Persistent Currents in Mesoscopic Mobius ladders

    Full text link
    We investigate the period halving of persistent currents(PCs) of non-interacting electrons in isolated mesoscopic M\"{o}bius ladders without disorder, pierced by Aharonov-Bhom flux. The mechanisms of the period halving effect depend on the parity of the number of electrons as well as on the interchain hopping. Although the data of PCs in mesoscopic systems are sample-specific, some simple rules are found in the canonical ensemble average, such as all the odd harmonics of the PCs disappear, and the signals of even harmonics are non-negative. {PACS number(s): 73.23.Ra, 73.23.-b, 68.65.-k}Comment: 6 Pages with 3 EPS figure

    Single-cluster dynamics for the random-cluster model

    Full text link
    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the qq-state Potts model to non-integer values q>1q>1. Its results for static quantities are in a satisfactory agreement with those of the existing Swendsen-Wang-Chayes-Machta (SWCM) algorithm, which involves a full cluster decomposition of random-cluster configurations. We explore the critical dynamics of this algorithm for several two-dimensional Potts and random-cluster models. For integer qq, the single-cluster algorithm can be reduced to the Wolff algorithm, for which case we find that the autocorrelation functions decay almost purely exponentially, with dynamic exponents zexp=0.07(1),0.521(7)z_{\rm exp} =0.07 (1), 0.521 (7), and 1.007(9)1.007 (9) for q=2,3q=2, 3, and 4 respectively. For non-integer qq, the dynamical behavior of the single-cluster algorithm appears to be very dissimilar to that of the SWCM algorithm. For large critical systems, the autocorrelation function displays a range of power-law behavior as a function of time. The dynamic exponents are relatively large. We provide an explanation for this peculiar dynamic behavior.Comment: 7 figures, 4 table

    Emergent O(n) Symmetry in a series of three-dimensional Potts Models

    Get PDF
    We study the q-state Potts model on the simple cubic lattice with ferromagnetic interactions in one lattice direction, and antiferromagnetic interactions in the two other directions. As the temperature T decreases, the system undergoes a second-order phase transition that fits in the universality class of the 3D O(n) model with n=q-1. This conclusion is based on the estimated critical exponents, and histograms of the order parameter. At even smaller T we find, for q=4 and 5, a first-order transition to a phase with a different type of long-range order. This long-range order dissolves at T=0, and the system effectively reduces to a disordered two-dimensional Potts antiferromagnet. These results are obtained by means of Monte Carlo simulations and finite-size scaling.Comment: 5 pages, 7 figures, accepted by Physical Review

    Superluminal propagation of an optical pulse in a Doppler broadened three-state, single channel active Raman gain medium

    Get PDF
    Using a single channel active Raman gain medium we show a (220±20)(220\pm 20)ns advance time for an optical pulse of τFWHM=15.4μ\tau_{FWHM}=15.4 \mus propagating through a 10 cm medium, a lead time that is comparable to what was reported previously. In addition, we have verified experimentally all the features associated with this single channel Raman gain system. Our results show that the reported gain-assisted superluminal propagation should not be attributed to the interference between the two frequencies of the pump field.Comment: 4 pages, 3 figure

    Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling

    Get PDF
    Heralded entanglement between collective excitations in two atomic ensembles is probabilistically generated, stored, and converted to single photon fields. By way of the concurrence, quantitative characterizations are reported for the scaling behavior of entanglement with excitation probability and for the temporal dynamics of various correlations resulting in the decay of entanglement. A lower bound of the concurrence for the collective atomic state of 0.9\pm 0.3 is inferred. The decay of entanglement as a function of storage time is also observed, and related to the local dynamics.Comment: 4 page
    • …
    corecore