629 research outputs found

    Protein Supplements for Beef Calves on Winter Range

    Get PDF
    These trials were to compare the effect of different sources and levels of supplemental protein on the winter and subsequent summer gains of beef calves grazing native range at the Fort Robinson Beef Cattle Research Station, Crawford, Nebraska

    Eccentric Contractions Disrupt FKBP12 Content in Mouse Skeletal Muscle

    Get PDF
    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from impaired voltage-gated sarcoplasmic reticulum (SR) Ca2+ release. FKBP12 is a 12-kD immunophilin known to bind to the SR Ca2+ release channel (ryanodine receptor, RyR1) and plays an important role in excitation-contraction coupling. To assess the effects of eccentric contractions on FKBP12 content, we measured anterior crural muscle (tibialis anterior [TA], extensor digitorum longus [EDL], extensor hallucis longus muscles) strength and FKBP12 content in pellet and supernatant fractions after centrifugation via immunoblotting from mice before and after a single bout of either 150 eccentric or concentric contractions. There were no changes in peak isometric torque or FKBP12 content in TA muscles after concentric contractions. However, FKBP12 content was reduced in the pelleted fraction immediately after eccentric contractions, and increased in the soluble protein fraction 3 day after injury induction. FKBP12 content was correlated (P = 0.025; R2 = 0.38) to strength deficits immediately after injury induction. In summary, eccentric contraction-induced muscle injury is associated with significant alterations in FKBP12 content after injury, and is correlated with changes in peak isometric torque

    Physical Controls on Carbonate Intraclasts: Modern Flat Pebbles From Great Salt Lake, Utah

    Get PDF
    In carbonate‐forming environments, authigenic minerals can cement surface sediments into centimeter‐sized intraclasts that are later reworked into “flat‐pebble” or “edgewise” conglomerates. Flat‐pebble conglomerates comprise only a small portion of facies in modern marine environments but are common in ancient strata, implying that seafloor cements were more widespread in the past. Flat‐pebble conglomerates nearly disappeared after the Ordovician radiation, yet it is unclear if this decline was due to changing seawater chemistry or if increased infaunalization and bioturbation simply worked to break down nascent clasts. We discovered a process analog that produces flat‐pebble conglomerates around the Great Salt Lake, Utah, USA, and studied these facies using field observations, wave models, satellite imagery, petrography, and microanalytic chemical data. Clasts were sourced from wave‐rippled grainstone that cemented in situ in offshore environments. Lake floor cements formed under aragonite saturation states that are lower than modern marine settings, suggesting that physical processes are at least as important as chemical ones. Results from our wave models showed that coarse sediments near the field site experience quiescent periods of up to 6 months between suspension events, allowing isopachous cements to form. Using a simple mathematical framework, we show that the main difference between Great Salt Lake and modern, low‐energy marine settings is that the latter has enough bioturbating organisms to break up clasts. Observations from Great Salt Lake demonstrate how geologic trends in flat‐pebble abundance could largely reflect changes in total infaunal biomass and ecology without requiring regional‐to‐global changes in seawater chemistry

    Physical Controls on Carbonate Intraclasts: Modern Flat Pebbles From Great Salt Lake, Utah

    Get PDF
    In carbonate‐forming environments, authigenic minerals can cement surface sediments into centimeter‐sized intraclasts that are later reworked into “flat‐pebble” or “edgewise” conglomerates. Flat‐pebble conglomerates comprise only a small portion of facies in modern marine environments but are common in ancient strata, implying that seafloor cements were more widespread in the past. Flat‐pebble conglomerates nearly disappeared after the Ordovician radiation, yet it is unclear if this decline was due to changing seawater chemistry or if increased infaunalization and bioturbation simply worked to break down nascent clasts. We discovered a process analog that produces flat‐pebble conglomerates around the Great Salt Lake, Utah, USA, and studied these facies using field observations, wave models, satellite imagery, petrography, and microanalytic chemical data. Clasts were sourced from wave‐rippled grainstone that cemented in situ in offshore environments. Lake floor cements formed under aragonite saturation states that are lower than modern marine settings, suggesting that physical processes are at least as important as chemical ones. Results from our wave models showed that coarse sediments near the field site experience quiescent periods of up to 6 months between suspension events, allowing isopachous cements to form. Using a simple mathematical framework, we show that the main difference between Great Salt Lake and modern, low‐energy marine settings is that the latter has enough bioturbating organisms to break up clasts. Observations from Great Salt Lake demonstrate how geologic trends in flat‐pebble abundance could largely reflect changes in total infaunal biomass and ecology without requiring regional‐to‐global changes in seawater chemistry

    Calibration and data quality of warm IRAC

    Get PDF
    We present an overview of the calibration and properties of data from the IRAC instrument aboard the Spitzer Space Telescope taken after the depletion of cryogen. The cryogen depleted on 15 May 2009, and shortly afterward a two-month- long calibration and characterization campaign was conducted. The array temperature and bias setpoints were revised on 19 September 2009 to take advantage of lower than expected power dissipation by the instrument and to improve sensitivity. The final operating temperature of the arrays is 28.7 K, the applied bias across each detector is 500 mV and the equilibrium temperature of the instrument chamber is 27.55 K. The final sensitivities are essentially the same as the cryogenic mission with the 3.6 ÎŒm array being slightly less sensitive (10%) and the 4.5 ÎŒm array within 5% of the cryogenic sensitivity. The current absolute photometric uncertainties are 4% at 3.6 and 4.5 ÎŒm, and better than milli-mag photometry is achievable for long-stare photometric observations. With continued analysis, we expect the absolute calibration to improve to the cryogenic value of 3%. Warm IRAC operations fully support all science that was conducted in the cryogenic mission and all currently planned warm science projects (including Exploration Science programs). We expect that IRAC will continue to make ground-breaking discoveries in star formation, the nature of the early universe, and in our understanding of the properties of exoplanets

    Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope: Early Results on Mrk 1014, Mrk 463, and UGC 5101

    Full text link
    We present spectra taken with the Infrared Spectrograph on Spitzer covering the 5-38micron region of three Ultraluminous Infrared Galaxies (ULIRGs): Mrk 1014 (z=0.163), and Mrk 463 (z=0.051), and UGC 5101 (z=0.039). The continua of UGC 5101 and Mrk 463 show strong silicate absorption suggesting significant optical depths to the nuclei at 10microns. UGC 5101 also shows the clear presence of water ice in absorption. PAH emission features are seen in both Mrk 1014 and UGC 5101, including the 16.4micron line in UGC 5101. The fine structure lines are consistent with dominant AGN power sources in both Mrk 1014 and Mrk 463. In UGC 5101 we detect the [NeV] 14.3micron emission line providing the first direct evidence for a buried AGN in the mid-infrared. The detection of the 9.66micron and 17.03micron H2_{2} emission lines in both UGC 5101 and Mrk 463 suggest that the warm molecular gas accounts for 22% and 48% of the total molecular gas masses in these galaxies.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 3 figure
    • 

    corecore