11,155 research outputs found

    Birth of Closed Strings and Death of Open Strings during Tachyon Condensation

    Full text link
    The tremendous progress achieved through the study of black holes and branes suggests that their time dependent generalizations called Spacelike branes (S-branes) may prove similarly useful. An example of an established approach to S-branes is to include a string boundary interaction and we first summarize evidence for the death of open string degrees of freedom for the homogeneous rolling tachyon on a decaying brane. Then, we review how to extract the flat S-brane worldvolumes describing the homogeneous rolling tachyon and how large deformations correspond to creation of lower dimensional strings and branes. These S-brane worldvolumes are governed by S-brane actions which are on equal footing to D-brane actions, since they are derived by imposing conformality on the string worldsheet, as well as by analyzing fluctuations of time dependent tachyon configurations. As further examples we generalize previous solutions of the S-brane actions so as to describe multiple decaying and nucleating closed fundamental strings. Conceptually S-brane actions are therefore different from D-brane actions and can provide a description of time dependent strings/branes and possibly their interactions.Comment: 15 pages, 7 eps figures; invited review for Modern Physics Letters A, including new solutions for S-brane actions. v2 published version, minor typos correcte

    Stationary quantum Markov process for the Wigner function

    Full text link
    As a stochastic model for quantum mechanics we present a stationary quantum Markov process for the time evolution of the Wigner function on a lattice phase space Z_N x Z_N with N odd. By introducing a phase factor extension to the phase space, each particle can be treated independently. This is an improvement on earlier methods that require the whole distribution function to determine the evolution of a constituent particle. The process has branching and vanishing points, though a finite time interval can be maintained between the branchings. The procedure to perform a simulation using the process is presented.Comment: 12 pages, no figures; replaced with version accepted for publication in J. Phys. A, title changed, an example adde

    Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy

    Get PDF
    The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by a Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced

    Stringy Derivation of Nahm Construction of Monopoles

    Full text link
    We derive the Nahm construction of monopoles from exact tachyon condensation on unstable D-branes. The Dirac operator used in the Nahm construction is identified with the tachyon profile in our D-brane approach, and we provide physical interpretation of the procedures Nahm gave. Crucial is the introduction of infinite number of brane-antibranes from which arbitrary D-brane can be constrcuted, exhibitting a unified view of various D-branes. We explicitly show the equivalence of the D3-brane boundary state with the monopole profile and the D1-brane boundary state with the Nahm data as transverse scalars.Comment: 18 pages, 4 eps figures, JHEP style, comments about low energy limits added, references adde

    Vortex-boson duality in four space-time dimensions

    Full text link
    A continuum version of the vortex-boson duality in (3+1) dimensions is formulated and its implications studied in the context of a pair Wigner crystal in underdoped cuprate superconductors. The dual theory to a phase fluctuating superconductor (or superfluid) is shown to be a theory of bosonic strings interacting through a Kalb-Ramond rank-2 tensorial gauge field. String condensation produces Higgs mass for the gauge field and the expected Wigner crystal emerges as an interesting space-time analog of the Abrikosov lattice.Comment: 4 pages REVTeX; for related work and info visit http://www.physics.ubc.ca/~fran

    Complete solution for unambiguous discrimination of three pure states with real inner products

    Get PDF
    Complete solutions are given in a closed analytic form for unambiguous discrimination of three general pure states with real mutual inner products. For this purpose, we first establish some general results on unambiguous discrimination of n linearly independent pure states. The uniqueness of solution is proved. The condition under which the problem is reduced to an (n-1)-state problem is clarified. After giving the solution for three pure states with real mutual inner products, we examine some difficulties in extending our method to the case of complex inner products. There is a class of set of three pure states with complex inner products for which we obtain an analytical solution.Comment: 13 pages, 3 figures, presentation improved, reference adde

    Black Hole Geometries in Noncommutative String Theory

    Full text link
    We obtain a generalized Schwarzschild (GS-) and a generalized Reissner-Nordstrom (GRN-) black hole geometries in (3+1)-dimensions, in a noncommutative string theory. In particular, we consider an effective theory of gravity on a curved D3D_3-brane in presence of an electromagnetic (EM-) field. Two different length scales, inherent in its noncommutative counter-part, are exploited to obtain a theory of effective gravity coupled to an U(1) noncommutative gauge theory to all orders in Θ\Theta. It is shown that the GRN-black hole geometry, in the Planckian regime, reduces to the GS-black hole. However in the classical regime it may be seen to govern both Reissner-Nordstrom and Schwarzschild geometries independently. The emerging notion of 2D black holes evident in the frame-work are analyzed. It is argued that the DD-string in the theory may be described by the near horizon 2D black hole geometry, in the gravity decoupling limit. Finally, our analysis explains the nature of the effective force derived from the nonlinear EM-field and accounts for the Hawking radiation phenomenon in the formalism.Comment: 30 pages, 2 figure

    Reexamination of optimal quantum state estimation of pure states

    Full text link
    A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by M. Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVM using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independent of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.Comment: v3(journal version): title changed, presentation improve
    • 

    corecore