We obtain a generalized Schwarzschild (GS-) and a generalized
Reissner-Nordstrom (GRN-) black hole geometries in (3+1)-dimensions, in a
noncommutative string theory. In particular, we consider an effective theory of
gravity on a curved D3-brane in presence of an electromagnetic (EM-) field.
Two different length scales, inherent in its noncommutative counter-part, are
exploited to obtain a theory of effective gravity coupled to an U(1)
noncommutative gauge theory to all orders in Θ. It is shown that the
GRN-black hole geometry, in the Planckian regime, reduces to the GS-black hole.
However in the classical regime it may be seen to govern both
Reissner-Nordstrom and Schwarzschild geometries independently. The emerging
notion of 2D black holes evident in the frame-work are analyzed. It is argued
that the D-string in the theory may be described by the near horizon 2D black
hole geometry, in the gravity decoupling limit. Finally, our analysis explains
the nature of the effective force derived from the nonlinear EM-field and
accounts for the Hawking radiation phenomenon in the formalism.Comment: 30 pages, 2 figure