587 research outputs found

    PlenoptiSign: An optical design tool for plenoptic imaging

    Get PDF
    © 2019 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.softx.2019.100259© 2019 The Authors Plenoptic imaging enables a light-field to be captured by a single monocular objective lens and an array of micro lenses attached to an image sensor. Metric distances of the light-field's depth planes remain unapparent prior to acquisition. Recent research showed that sampled depth locations rely on the parameters of the system's optical components. This paper presents PlenoptiSign, which implements these findings as a Python software package to help assist in an experimental or prototyping stage of a plenoptic system.Published versio

    Baseline and triangulation geometry in a standard plenoptic camera

    Get PDF
    In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model

    Auditory language comprehension in children with developmental dyslexia: Evidence from event-related brain potentials

    Get PDF
    In the present study, event-related brain potentials (ERPs) were used to compare auditory sentence comprehension in 16 children with developmental dyslexia (age 9-12 years) and unimpaired controls matched on age, sex, and nonverbal intelligence. Passive sentences were presented, which were either correct or contained a syntactic violation (phrase structure) or a semantic violation (selectional restriction). In an overall sentence correctness judgment task, both control and dyslexic children performed well. In the ERPs, control children and dyslexic children demonstrated a similar N400 component for the semantic violation. For the syntactic violation, control children demonstrated a combined pattern, consisting of an early starting bilaterally distributed anterior negativity and a late centro-parietal positivity (P600). Dyslexic children showed a different pattern that is characterized by a delayed left lateralized anterior negativity, followed by a P600. These data indicate that dyslexic children do not differ from unimpaired controls with respect to semantic integration processes (N400) or controlled processes of syntactic reanalyses (P600) during auditory sentence comprehension. However, early and presumably highly automatic processes of phrase structure building reflected in the anterior negativity are delayed in dyslexic children. Moreover, the differences in hemispheric distribution of the syntactic negativity indicate different underlying processes in dyslexic children and controls. The bilateral distribution in controls suggests an involvement of right hemispherically established prosodic processes in addition to the left hemispherically localized syntactic processes, supporting the view that prosodic information may be used to facilitate syntactic processing during normal comprehension. The left hemispheric distribution observed for dyslexic children, in contrast, suggests that these children do not rely on information about the prosodic contour during auditory sentence comprehension as much as controls do. This finding points toward a phonological impairment in dyslexic children that might hamper the development of syntactic processes

    Time as an operator/observable in nonrelativistic quantum mechanics

    Full text link
    The nonrelativistic Schroedinger equation for motion of a structureless particle in four-dimensional space-time entails a well-known expression for the conserved four-vector field of local probability density and current that are associated with a quantum state solution to the equation. Under the physical assumption that each spatial, as well as the temporal, component of this current is observable, the position in time becomes an operator and an observable in that the weighted average value of the time of the particle's crossing of a complete hyperplane can be simply defined: ... When the space-time coordinates are (t,x,y,z), the paper analyzes in detail the case that the hyperplane is of the type z=constant. Particles can cross such a hyperplane in either direction, so it proves convenient to introduce an indefinite metric, and correspondingly a sesquilinear inner product with non-Hilbert space structure, for the space of quantum states on such a surface. >... A detailed formalism for computing average crossing times on a z=constant hyperplane, and average dwell times and delay times for a zone of interaction between a pair of z=constant hyperplanes, is presented.Comment: 31 pages, no figures. Differs from published version by minor corrections and additions, and two citation

    A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study

    Get PDF
    Albaum S, Hahne H, Otto A, et al. A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study. Proteome Science. 2011;9(1): 30.Background: Mass spectrometry-based proteomics has reached a stage where it is possible to comprehensively analyze the whole proteome of a cell in one experiment. Here, the employment of stable isotopes has become a standard technique to yield relative abundance values of proteins. In recent times, more and more experiments are conducted that depict not only a static image of the up- or down-regulated proteins at a distinct time point but instead compare developmental stages of an organism or varying experimental conditions. Results: Although the scientific questions behind these experiments are of course manifold, there are, nevertheless, two questions that commonly arise: 1) which proteins are differentially regulated regarding the selected experimental conditions, and 2) are there groups of proteins that show similar abundance ratios, indicating that they have a similar turnover? We give advice on how these two questions can be answered and comprehensively compare a variety of commonly applied computational methods and their outcomes. Conclusions: This work provides guidance through the jungle of computational methods to analyze mass spectrometry-based isotope-labeled datasets and recommends an effective and easy-to-use evaluation strategy. We demonstrate our approach with three recently published datasets on Bacillus subtilis [1,2] and Corynebacterium glutamicum [3]. Special focus is placed on the application and validation of cluster analysis methods. All applied methods were implemented within the rich internet application QuPE [4]. Results can be found at http://qupe.cebitec.uni-bielefeld.de webcite

    Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries

    Full text link
    We extend the definition of generalized parity PP, charge-conjugation CC and time-reversal TT operators to nondiagonalizable pseudo-Hermitian Hamiltonians, and we use these generalized operators to describe the full set of symmetries of a pseudo-Hermitian Hamiltonian according to a fourfold classification. In particular we show that TPTP and CTPCTP are the generators of the antiunitary symmetries; moreover, a necessary and sufficient condition is provided for a pseudo-Hermitian Hamiltonian HH to admit a PP-reflecting symmetry which generates the PP-pseudounitary and the PP-pseudoantiunitary symmetries. Finally, a physical example is considered and some hints on the PP-unitary evolution of a physical system are also given.Comment: 20 page

    Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave-packet

    Full text link
    The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave-packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass-dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Secondly, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass-dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass-dependence of both the position detection probabilities and the mean arrival time vanish in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case.Comment: 11 pages, 7 figure

    High-Brightness Beams from a Light Source Injector: The Advanced Photon Source Low-Energy Undulator Test Line Linac

    Get PDF
    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, including details on technical systems improvements and electron beam measurement techniques, will be discussed. The linac is capable of accelerating beams to over 650 MeV. The nominal FEL beam parameters used are as follows: 217 MeV energy; 0.1-0.2% rms energy spread; 4-8 um normalized rms emittance; 80-120 A peak current from a 0.2-0.7 nC charge at a 2-7 ps FWHM bunch
    corecore