357 research outputs found

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc

    The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse

    Get PDF
    The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects

    A reafferent and feed-forward model of song syntax generation in the Bengalese finch

    Get PDF
    Adult Bengalese finches generate a variable song that obeys a distinct and individual syntax. The syntax is gradually lost over a period of days after deafening and is recovered when hearing is restored. We present a spiking neuronal network model of the song syntax generation and its loss, based on the assumption that the syntax is stored in reafferent connections from the auditory to the motor control area. Propagating synfire activity in the HVC codes for individual syllables of the song and priming signals from the auditory network reduce the competition between syllables to allow only those transitions that are permitted by the syntax. Both imprinting of song syntax within HVC and the interaction of the reafferent signal with an efference copy of the motor command are sufficient to explain the gradual loss of syntax in the absence of auditory feedback. The model also reproduces for the first time experimental findings on the influence of altered auditory feedback on the song syntax generation, and predicts song- and species-specific low frequency components in the LFP. This study illustrates how sequential compositionality following a defined syntax can be realized in networks of spiking neurons

    Clinical and biological progress over 50 years in Rett syndrome

    Get PDF
    In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families

    Food Systems Resilience : Towards an Interdisciplinary Research Agenda

    Get PDF
    In this article, we offer a contribution to the ongoing study of food by advancing a conceptual framework and interdisciplinary research agenda – what we term ‘food system resilience’. In recent years, the concept of resilience has been extensively used in a variety of fields, but not always consistently or holistically. Here we aim to theorise systematically resilience as an analytical concept as it applies to food systems research. To do this, we engage with and seek to extend current understandings of resilience across different disciplines. Accordingly, we begin by exploring the different ways in which the concept of resilience is understood and used in current academic and practitioner literatures - both as a general concept and as applied specifically to food systems research. We show that the social-ecological perspective, rooted in an appreciation of the complexity of systems, carries significant analytical potential. We first underline what we mean by the food system and relate our understanding of this term to those commonly found in the extant food studies literature. We then apply our conception to the specific case of the UK. Here we distinguish between four subsystems at which our ‘resilient food systems’ can be applied. These are, namely, the agro-food system; the value chain; the retail-consumption nexus; and the governance and regulatory framework. On the basis of this conceptualisation we provide an interdisciplinary research agenda, using the case of the UK to illustrate the sorts of research questions and innovative methodologies that our food systems resilience approach is designed to promote

    Persian cats under first opinion veterinary care in the UK:demography, mortality and disorders

    Get PDF
    Persian cats are a popular cat breed worldwide, and especially in the US, Europe and Asia. This study aimed to describe the demography, common disorders and mortality in Persians under general practice veterinary care in 2013 in the UK. The study population of 285,547 cats overall included 3235 (1.1%) Persians. Mean adult Persian bodyweight was 3.9 kg (SD 0.9) and median age was 7.0 years (IQR 3.3–11.6). At least one disorder was recorded in 2099 (64.9%) Persians. The most common specific disorders were haircoat disorders (411, 12.7%), periodontal disease (365, 11.3%), overgrown nails (234, 7.2%), and ocular discharge (188, 5.8%). The most common disorder groups were dermatological (578, 17.9%), ophthalmological (496, 15.3%) and dental (397, 12.3%). Median longevity was 13.5 years (IQR 9.9–16.0). The most common grouped causes of death were renal disease (102, 23.4%), neoplasia (37, 8.5%) and mass-associated disorder (35, 8.0%). This is the first study to use general practice data to examine the overall health of Persian cats. With haircoat, ocular and dental disorders being the predominant disorders identified, this study highlights the need for increased owner awareness to manage and prevent the typical health problems associated with this breed’s phenotype
    corecore