42,680 research outputs found

    Testing and evaluation of solid lubricants for gas bearings

    Get PDF
    The testing and results of testing solid film lubricants for gas lubricated bearing applications are reported. The tests simulated operational hazards of tilting pad gas bearings. The presence of a low coefficient of friction and the endurance of the solid film lubricant were the criteria for judging superior performance. All solid lubricants tested were applied to a plasma sprayed chrome oxide surface. Molybdenum disulfide and graphite fluoride were the solid lubricants tested; other test parameters included the method of application of the solid lubricant and the surface finish of the plasma sprayed coating. In general, the application of a solid film lubricant was found to significantly improve the coefficient of friction of the rubbing surfaces

    Electronic structure of an electron on the gyroid surface, a helical labyrinth

    Full text link
    Previously reported formulation for electrons on curved periodic surfaces is used to analyze the band structure of an electron bound on the gyroid surface (the only triply-periodic minimal surface that has screw axes). We find that an effect of the helical structure appears as the bands multiply sticking together on the Brillouin zone boundaries. We elaborate how the band sticking is lifted when the helical and inversion symmetries of the structure are degraded. We find from this that the symmetries give rise to prominent peaks in the density of states.Comment: RevTeX, 4 pages, 6 figure

    Low-Temperature Excitations of Dilute Lattice Spin Glasses

    Full text link
    A new approach to exploring low-temperature excitations in finite-dimensional lattice spin glasses is proposed. By focusing on bond-diluted lattices just above the percolation threshold, large system sizes LL can be obtained which lead to enhanced scaling regimes and more accurate exponents. Furthermore, this method in principle remains practical for any dimension, yielding exponents that so far have been elusive. This approach is demonstrated by determining the stiffness exponent for dimensions d=3d=3, d=6d=6 (the upper critical dimension), and d=7d=7. Key is the application of an exact reduction algorithm, which eliminates a large fraction of spins, so that the reduced lattices never exceed 103\sim10^3 variables for sizes as large as L=30 in d=3d=3, L=9 in d=6d=6, or L=8 in d=7d=7. Finite size scaling analysis gives y3=0.24(1)y_3=0.24(1) for d=3d=3, significantly improving on previous work. The results for d=6d=6 and d=7d=7, y6=1.1(1)y_6=1.1(1) and y7=1.24(5)y_7=1.24(5), are entirely new and are compared with mean-field predictions made for d>=6.Comment: 7 pages, LaTex, 7 ps-figures included, added result for stiffness in d=7, as to appear in Europhysics Letters (see http://www.physics.emory.edu/faculty/boettcher/ for related information

    Small-Angle Excess Scattering: Glassy Freezing or Local Orientational Ordering?

    Full text link
    We present Monte Carlo simulations of a dense polymer melt which shows glass-transition-like slowing-down upon cooling, as well as a build up of nematic order. At small wave vectors q this model system shows excess scattering similar to that recently reported for light-scattering experiments on some polymeric and molecular glass-forming liquids. For our model system we can provide clear evidence that this excess scattering is due to the onset of short-range nematic order and not directly related to the glass transition.Comment: 3 Pages of Latex + 4 Figure

    Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    Full text link
    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number

    Numerical Studies of the Compressible Ising Spin Glass

    Full text link
    We study a two-dimensional compressible Ising spin glass at constant volume. The spin interactions are coupled to the distance between neighboring particles in the Edwards-Anderson model with +/- J interactions. We find that the energy of a given spin configuration is shifted from its incompressible value, E_0, by an amount quadratic in E_0 and proportional to the coupling strength. We then construct a simple model expressed only in terms of spin variables that predicts the existence of a critical value of the coupling above which the spin-glass transition disappears.Comment: REVTeX, 4 pages, 4 figures. Submitted to Phys. Rev. Let

    Free-induction decay and envelope modulations in a narrowed nuclear spin bath

    Full text link
    We evaluate free-induction decay for the transverse components of a localized electron spin coupled to a bath of nuclear spins via the Fermi contact hyperfine interaction. Our perturbative treatment is valid for special (narrowed) bath initial conditions and when the Zeeman energy of the electron bb exceeds the total hyperfine coupling constant AA: b>Ab>A. Using one unified and systematic method, we recover previous results reported at short and long times using different techniques. We find a new and unexpected modulation of the free-induction-decay envelope, which is present even for a purely isotropic hyperfine interaction without spin echoes and for a single nuclear species. We give sub-leading corrections to the decoherence rate, and show that, in general, the decoherence rate has a non-monotonic dependence on electron Zeeman splitting, leading to a pronounced maximum. These results illustrate the limitations of methods that make use of leading-order effective Hamiltonians and re-exponentiation of short-time expansions for a strongly-interacting system with non-Markovian (history-dependent) dynamics.Comment: 13 pages, 9 figure
    corecore