3,110 research outputs found

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    A Roadmap for Interdisciplinary Research on the Internet of Things

    No full text
    In mid-2011, the Technology Strategy Board started an integrated programme of work focused on the Internet of Things (IoT), which included strategic investment and the establishment of a Special Interest Group aimed at building and engaging a UK community of innovators and researchers in the IoT. As the portfolio of activities with businesses, academics and other stakeholders progressed, it became apparent to us that the community had a keen interest in taking a more concerted and deeper look at the fundamental research issues in the IoT and that a more interdisciplinary approach was needed.Responding to this level of interest, the Technology Strategy Board joined forces with the Arts and Humanities Research Council, the Economic and Social Research Council, the Engineering and Physical Sciences Research Council and the Research Councils UK Digital Economy Programme and agreed to collaborate on an interdisciplinary R&D roadmapping activity, arguably the first of its kind in the UK. The activity, led by Professors Rahim Tafazolli, Hamid Aghvami, Rachel Cooper, William Dutton and Dr Colin Upstill brought together insight from a wide group of leaders and culminated in a two-day ‘meeting of minds’ in Loughborough on 11 and 12 July 2012. This report summarises the outcomes of the activity and makes important wide-ranging recommendations

    How to bend galaxy disc profiles - II. Stars surfing the bar in Type-III discs

    Get PDF
    The radial profiles of stars in disc galaxies are observed to be either purely exponential (Type-I), truncated (Type-II) or antitruncated (Type-III) exponentials. Controlled formation simulations of isolated galaxies can reproduce all of these profile types by varying a single parameter, the initial halo spin. In this paper, we examine these simulations in more detail in an effort to identify the physical mechanism that leads to the formation of Type-III profiles. The stars in the antitruncated outskirts of such discs are now on eccentric orbits, but were born on near-circular orbits at much smaller radii. We show that, and explain how, they were driven to the outskirts via non-linear interactions with a strong and long-lived central bar, which greatly boosted their semimajor axis but also their eccentricity. While bars have been known to cause radial heating and outward migration to stellar orbits, we link this effect to the formation of Type-III profiles. This predicts that the antitruncated parts of galaxies have unusual kinematics for disc-like stellar configurations: high radial velocity dispersions and slow net rotation. Whether such discs exist in nature, can be tested by future observations

    Unwired Cities

    Full text link

    Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk

    Full text link
    We explore theoretically electromagnetically-induced transparency (EIT) in a superconducting quantum circuit (SQC). The system is a persistent-current flux qubit biased in a Λ\Lambda configuration. Previously [Phys. Rev. Lett. 93, 087003 (2004)], we showed that an ideally-prepared EIT system provides a sensitive means to probe decoherence. Here, we extend this work by exploring the effects of imperfect dark-state preparation and specific decoherence mechanisms (population loss via tunneling, pure dephasing, and incoherent population exchange). We find an initial, rapid population loss from the Λ\Lambda system for an imperfectly prepared dark state. This is followed by a slower population loss due to both the detuning of the microwave fields from the EIT resonance and the existing decoherence mechanisms. We find analytic expressions for the slow loss rate, with coefficients that depend on the particular decoherence mechanisms, thereby providing a means to probe, identify, and quantify various sources of decoherence with EIT. We go beyond the rotating wave approximation to consider how strong microwave fields can induce additional off-resonant transitions in the SQC, and we show how these effects can be mitigated by compensation of the resulting AC Stark shifts

    Formation of shock waves in a Bose-Einstein condensate

    Full text link
    We consider propagation of density wave packets in a Bose-Einstein condensate. We show that the shape of initially broad, laser-induced, density perturbation changes in the course of free time evolution so that a shock wave front finally forms. Our results are well beyond predictions of commonly used zero-amplitude approach, so they can be useful in extraction of a speed of sound from experimental data. We discuss a simple experimental setup for shock propagation and point out possible limitations of the mean-field approach for description of shock phenomena in a BEC.Comment: 8 pages & 6 figures, minor changes, more references, to appear in Phys. Rev.

    Towards a first principles description of phonons in Ni50_{50}Pt50_{50} disordered alloys: the role of relaxation

    Full text link
    Using a combination of density-functional perturbation theory and the itinerant coherent potential approximation, we study the effects of atomic relaxation on the inelastic incoherent neutron scattering cross sections of disordered Ni50_{50}Pt50_{50} alloys. We build on previous work, where empirical force constants were adjusted {\it ad hoc} to agree with experiment. After first relaxing all structural parameters within the local-density approximation for ordered NiPt compounds, density-functional perturbation theory is then used to compute phonon spectra, densities of states, and the force constants. The resulting nearest-neighbor force constants are first compared to those of other ordered structures of different stoichiometry, and then used to generate the inelastic scattering cross sections within the itinerant coherent potential approximation. We find that structural relaxation substantially affects the computed force constants and resulting inelastic cross sections, and that the effect is much more pronounced in random alloys than in ordered alloys.Comment: 8 pages, 3 eps figures, uses revtex

    Superconductivity at 2.3 K in the misfit compound (PbSe)1.16(TiSe2)2

    Full text link
    The structural misfit compound (PbSe)1.16(TiSe2)2 is reported. It is a superconductor with a Tc of 2.3 K. (PbSe)1.16(TiSe2)2 derives from a parent compound, TiSe2, which shows a charge density wave transition and no superconductivity. The crystal structure, characterized by high resolution electron microscopy and powder x-ray diffraction, consists of two layers of 1T-TiSe2 alternating with a double layer of (100) PbSe. Transport measurements suggest that the superconductivity is induced by charge transfer from the PbSe layers to the TiSe2 layers.Comment: 17 pages, 4 figures. To be published in Physical Review

    Improving measurements of SF6 for the study of atmospheric transport and emissions

    Get PDF
    Sulfur hexafluoride (SF6) is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD) is 1–2%. We have modified a common GC-ECD method to achieve measurement precision of 0.5% or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10% decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30±0.03 pmol mol−1 (ppt) yr−1 (95% C.L.)
    corecore