203 research outputs found

    Anti-bacterial susceptibility patterns of blood culture isolates at a referral hospital in Eldoret

    Get PDF
    Background: Hospital treatment guidelines are often guided by scientific evidence of efficacy of the anti-microbial agents. In developing countries, most of the treatment guidelines are adopted from the World Health Organisation (WHO). However, local data is often needed to confirm or adjust these guidelines to suit a local situation. In resource limited settings there is scarce data on blood culture isolates and their antimicrobial sensitivity patterns to guide anti-biotic prescription in these settings.Objectives: To assess the bloodstream bacterial isolates and their anti-biotic sensitivity patterns in patients admitted at a tertiary teaching and referral hospital.Design: Hospital based laboratory retrospective studySetting: Moi Teaching and Referral Hospital (MTRH), Eldoret, Kenya.Subjects: All blood culture specimens received from inpatients at MTRH over a 12 year period from 2002 to 2013.Results: The median age was 13.4yrs (IQR 0.7-29).Most of the blood samples were from female patients (51.8%). A total of 4046 blood culture samples were analysed of which 29.9% (n=1356) yielded positive growths. Majority of the positive blood cultures were from the New Born Unit (62.4%). Staph epidermidis was the most common organism isolated (43.1% n=531) followed by Klebsiella pneumoniae (22.8% n=281). Resistance to commonly used anti-biotics (penicillin, cephalosporin) was high among gram positive as well as gram negative organisms. No trend in bacterial isolates was observed over the study period.Conclusions: Staph epidermidis and Klebsiella pneumoniae were the most common organisms isolated with higher growth rates occurring in the neonatal and paediatric age groups than in adults. There was no trend in bacterial isolates over the study period. Resistance to commonly used anti-biotics was prevalent

    New Precision Electroweak Tests of SU(5) x U(1) Supergravity

    Full text link
    We explore the one-loop electroweak radiative corrections in SU(5)×U(1)SU(5)\times U(1) supergravity via explicit calculation of vacuum-polarization and vertex-correction contributions to the ϵ1\epsilon_1 and ϵb\epsilon_b parameters. Experimentally, these parameters are obtained from a global fit to the set of observables Γl,Γb,AFBl\Gamma_{l}, \Gamma_{b}, A^{l}_{FB}, and MW/MZM_W/M_Z. We include q2q^2-dependent effects, which induce a large systematic negative shift on ϵ1\epsilon_{1} for light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). The (non-oblique) supersymmetric vertex corrections to \Zbb, which define the ϵb\epsilon_b parameter, show a significant positive shift for light chargino masses, which for tanβ2\tan\beta\approx2 can be nearly compensated by a negative shift from the charged Higgs contribution. We conclude that at the 90\%CL, for m_t\lsim160\GeV the present experimental values of ϵ1\epsilon_1 and ϵb\epsilon_b do not constrain in any way SU(5)×U(1)SU(5)\times U(1) supergravity in both no-scale and dilaton scenarios. On the other hand, for m_t\gsim160\GeV the constraints on the parameter space become increasingly stricter. We demonstrate this trend with a study of the m_t=170\GeV case, where only a small region of parameter space, with \tan\beta\gsim4, remains allowed and corresponds to light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). Thus SU(5)×U(1)SU(5)\times U(1) supergravity combined with high-precision LEP data would suggest the presence of light charginos if the top quark is not detected at the Tevatron.Comment: LaTeX, 11 Pages+4 Figures(not included), the figures available upon request as an uuencoded file(0.4MB) or 4 PS files from [email protected], CERN-TH.7078/93, CTP-TAMU-68/93, ACT-24/9

    Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation.

    Get PDF
    The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Å using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases.

    Get PDF
    Dipeptidyl-peptidase VI from Bacillus sphaericus and YkfC from Bacillus subtilis have both previously been characterized as highly specific γ-D-glutamyl-L-diamino acid endopeptidases. The crystal structure of a YkfC ortholog from Bacillus cereus (BcYkfC) at 1.8 Å resolution revealed that it contains two N-terminal bacterial SH3 (SH3b) domains in addition to the C-terminal catalytic NlpC/P60 domain that is ubiquitous in the very large family of cell-wall-related cysteine peptidases. A bound reaction product (L-Ala-γ-D-Glu) enabled the identification of conserved sequence and structural signatures for recognition of L-Ala and γ-D-Glu and, therefore, provides a clear framework for understanding the substrate specificity observed in dipeptidyl-peptidase VI, YkfC and other NlpC/P60 domains in general. The first SH3b domain plays an important role in defining substrate specificity by contributing to the formation of the active site, such that only murein peptides with a free N-terminal alanine are allowed. A conserved tyrosine in the SH3b domain of the YkfC subfamily is correlated with the presence of a conserved acidic residue in the NlpC/P60 domain and both residues interact with the free amine group of the alanine. This structural feature allows the definition of a subfamily of NlpC/P60 enzymes with the same N-terminal substrate requirements, including a previously characterized cyanobacterial L-alanine-γ-D-glutamate endopeptidase that contains the two key components (an NlpC/P60 domain attached to an SH3b domain) for assembly of a YkfC-like active site

    Probing Supergravity Models with Indirect Experimental Signatures

    Get PDF
    We explore the one-loop electroweak radiative corrections in the context of the traditional minimal SU(5)SU(5) and the string-inspired SU(5)×U(1)SU(5)\times U(1) supergravity models by calculating explicitly vacuum-polarization and vertex-correction contributions to the ϵ1\epsilon_1 and ϵb\epsilon_b parameters. We also include in this analysis the constraint from bsγb\rightarrow s\gamma whose inclusive branching ratio B(bsγ)B(b\rightarrow s\gamma) has been actually measured very recently by CLEO. We find that by combining these three most important indirect experimental signatures and using the most recent experimental values for them, mt170GeVm_t\gtrsim 170 {\rm GeV} is excluded for μ>0\mu>0 in both the minimal SU(5)SU(5) supergravity and the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity. We also find that mt175(185)GeVm_t\gtrsim 175(185) {\rm GeV} is excluded for any sign of μ\mu in the minimal (SU(5)×U(1)SU(5)\times U(1)) supergravity model.Comment: RevTeX 3.0, 16 Pages+4 figures(not included but available as a uuencoded file from [email protected]), SNUTP-94-9

    Precision Electroweak Tests of the Minimal and Flipped SU(5) Supergravity Models

    Full text link
    We explore the one-loop electroweak radiative corrections in the minimal SU(5)SU(5) and the no-scale flipped SU(5)SU(5) supergravity models via explicit calculation of vacuum polarization contributions to the ϵ1,2,3\epsilon_{1,2,3} parameters. Experimentally, ϵ1,2,3\epsilon_{1,2,3} are obtained from a global fit to the LEP observables, and MW/MZM_W/M_Z measurements. We include q2q^2-dependent effects which have been neglected in most previous ``model-independent" analyses of this type. These effects induce a large systematic negative shift on ϵ1,2,3\epsilon_{1,2,3} for light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). In agreement with previous general arguments, we find that for increasingly large sparticle masses, the heavy sector of both models rapidly decouples, \ie, the values for ϵ1,2,3\epsilon_{1,2,3} quickly asymptote to the Standard Model values with a {\it light} Higgs (m_{H_{SM}}\sim100\GeV). Specifically, at present the 90%90\% CL upper limit on the top-quark mass is m_t\lsim175\GeV in the no-scale flipped SU(5)SU(5) supergravity model. These bounds can be strengthened for increasing chargino masses in the 50-100\GeV interval. In particular, for m_t\gsim160\GeV, the Tevatron may be able to probe through gluino(g~\tilde g) and squark(q~\tilde q) production up to m_{\tilde g}\approx m_{\tilde q}\approx250\GeV, exploring at least half of the parameter space in this model.Comment: 15 pages,(6 ps figures available upon request), TeX(harvmac), CTP-TAMU-19/93, ACT-07/9
    corecore