1,898 research outputs found

    A Matter of Taste: Capsaicinoid Diversity in Chile Peppers and the Importance to Human Food Preference

    Get PDF
    Chile peppers are valued worldwide for their distinct capsaicinoid compounds that have been used traditionally in medicine and culinary practices. With 32 known species, five of them domesticated, they provide unique chemical profiles, when consumed by humans. Capsaicinoids, the spicy compounds, are alkaloids used to deter herbivory in the wild, offering protection to the chile pepper fruit seeds. Among the 22 known capsaicinoid structures, capsaicin and dihydrocapsaicin are normally the most abundant. In humans, capsaicin binds to nociceptor TRPV1 that generates a heat sensation. Capsaicin also mitigates inflammation responses in the digestive tract and has the potential to aid in nutrient absorption. Distinct heat profiles were recently described for the five domesticated Capsicum species showing a difference in heat sensations specific to species and pod type. Due to the many capsaicinoid structures, we explore the implications and opportunities of having a diverse array of heat profiles in genetically diverse Capsicum species

    Spherical Hartree-Fock calculations with linear momentum projection before the variation.Part II: Spectral functions and spectroscopic factors

    Full text link
    The hole--spectral functions and from these the spectroscopic factors have been calculated in an Galilei--invariant way for the ground state wave functions resulting from spherical Hartree--Fock calculations with projection onto zero total linear momentum before the variation for the nuclei 4He, 12C, 16O, 28Si, 32S and 40Ca. The results are compared to those of the conventional approach which uses the ground states resulting from usual spherical Hartree--Fock calculations subtracting the kinetic energy of the center of mass motion before the variation and to the results obtained analytically with oscillator occupations.Comment: 16 pages, 22 postscript figure

    Casimir torque

    Full text link
    We develop a formalism for the calculation of the flow of angular momentum carried by the fluctuating electromagnetic field within a cavity bounded by two flat anisotropic materials. By generalizing a procedure employed recently for the calculation of the Casimir force between arbitrary materials, we obtain an expression for the torque between anisotropic plates in terms of their reflection amplitude matrices. We evaluate the torque in 1D for ideal and realistic model materials.Comment: 8 pages, 4 figs, Submitted to Proc. of QFEXT'05, to appear in J. Phys.

    Role of triaxiality in the ground state shape of neutron rich Yb, Hf, W, Os, and Pt isotopes

    Get PDF
    The evolution of the ground-state shape along the triaxial landscape of several isotopes of Yb, Hf, W, Os, and Pt is analyzed using the self-consistent Hartree-Fock-Bogoliubov approximation. Two well reputed interactions (Gogny D1S and Skyrme SLy4) have been used in the study in order to asses to which extent the results are independent of the details of the effective interaction. A large number of even-even nuclei, with neutron numbers from N=110 up to N=122 has been considered, covering in this way a vast extension of the nuclear landscape where signatures of oblate-prolate shape transitions have already manifested both theoretically and experimentally.Comment: 21 pages, 8 figure

    Time-dependent Mechanics and Lagrangian submanifolds of Dirac manifolds

    Full text link
    A description of time-dependent Mechanics in terms of Lagrangian submanifolds of Dirac manifolds (in particular, presymplectic and Poisson manifolds) is presented. Two new Tulczyjew triples are discussed. The first one is adapted to the restricted Hamiltonian formalism and the second one is adapted to the extended Hamiltonian formalism

    Noncommutivity and Scalar Field Cosmology

    Full text link
    In this work we extend and apply a previous proposal to study noncommutative cosmology to the FRW cosmological background coupled to a scalar field, this is done in classical and quantum scenarios. In both cases noncommutativity is introduced in the gravitational field as well as in the scalar field through a deformation of minisuperspace and are able to find exact solutions. Finally, the effects of noncommutativity on the classical evolution are analyzed.Comment: 4 Pages, 2 figures, Revtex

    Water, land and carbon footprints of Chinese dairy in the past and future

    Get PDF
    Chinese food consumption shifts towards larger milk consumption. Traditional dairy systems depended on China's grasslands, but modern industrial systems using feed from croplands increase rapidly. The question is whether China can fulfill future milk demand using its natural resources and remain within greenhouse gas emission boundaries. To determine this, this study combines three footprint analyses - water footprint (WF), land footprint (LF) and carbon footprint (CF) - estimated via production chain approach. It compares WFs, LFs and CFs of milk, meat, and manure from six dairy systems in three categories: traditional grazing, traditional mixed, and modern industrial systems. It estimates future footprints for five production scenarios for low and high milk demand. Between 2000 and 2020, industrial systems increased, accounting for 79 % of production in 2020, while traditional production decreased. Traditional grazing systems have large green WFs per kg (17.2 m3), negligible blue WFs and large LFs (46 m2 low quality grassland). Traditional mixed systems have large CFs per kg (2.93 kg CO2) due to low efficiency. Modern industrial systems rely partly on irrigated croplands and have small green WFs, but large blue WFs per kg (0.54 m3), grey WFs (0.24 m3) and small LFs (1.80 m2 cropland). The findings indicate that with dominating industrial systems, milk production relies more on irrigation and limited croplands. In a realistic low demand situation, milk consumption stabilizes. However, consumption triples if the Chinese follow nutritional advice, resulting in 4 to 6 times larger WFs, LFs and CFs in 2035 depending on production scenarios. In 2035, population is largest, from 2035 to 2050 footprints decrease again. However, China cannot produce the milk for a high consumption situation limited by grassland and cropland availability. Alternatively, China could import feed or milk. However, it is questionable whether these huge quantities are available on the global market.</p

    Accretion of phantom scalar field into a black hole

    Full text link
    Using numerical methods we present the first full nonlinear study of phantom scalar field accreted into a black hole. We study different initial configurations and find that the accretion of the field into the black hole can reduce its area down to 50 percent within time scales of the order of few masses of the initial horizon. The analysis includes the cases where the total energy of the space-time is positive or negative. The confirmation of this effect in full nonlinear general relativity implies that the accretion of exotic matter could be considered an evaporation process. We speculate that if this sort of exotic matter has some cosmological significance, this black hole area reduction process might have played a crucial role in black hole formation and population.Comment: 5 revtex pages, 4 eps figures. Minor changes applie
    corecore