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Finland
3 Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

E-mail: luis.robledo@uam.es

Abstract. The evolution of the ground-state shape along the triaxial landscape of

several isotopes of Yb, Hf, W, Os, and Pt is analyzed using the self-consistent Hartree-

Fock-Bogoliubov approximation. Two well reputed interactions (Gogny D1S and

Skyrme SLy4) have been used in the study in order to asses to which extent the results

are independent of the details of the effective interaction. A large number of even-even

nuclei, with neutron numbers from N = 110 up to N = 122 has been considered,

covering in this way a vast extension of the nuclear landscape where signatures

of oblate-prolate shape transitions have already manifested both theoretically and

experimentally.
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1. Introduction

One of the most often encountered characteristics of the atomic nucleus is the existence

of an intrinsic deformed ground state. Deformation is a direct consequence of the

spontaneous rotational symmetry breaking mechanism of the mean field approximation

and owes its popularity to its ability to incorporate correlations into the mean field

wave function [1]. Both, experimental results and theoretical calculations lead to the

conclusion that most of the deformed nuclei show a quadrupole deformation of the

prolate kind (cigar-like shape) that preserves to a great extent axial symmetry (i.e.,

there exists a symmetry axis in the matter distribution). Therefore, those regions of the

nuclide chart showing oblate deformation or deformed mass distributions breaking axial

symmetry (referred to as triaxial distributions) are of great interest to deepen into the

understanding of the shell structure underlying the appearance of deformation. In this

respect, a region of interest is the one with mass number A around 190 where a prolate

to oblate shape transition as a function of neutron number has been predicted [2, 3, 4]

as well as some examples of triaxial ground states. This has fostered both theoretical

[5, 6, 7, 8, 9, 10, 11, 12, 13] and experimental [14, 15, 16, 17, 18, 19, 20] studies in the

region. Conclusive experimental results are scarce as it is not easy to find an observable

sensitive to the sign of deformation and/or triaxiality that is, at the same time, easy to

measure. As a consequence,,Morales.08 theoretical predictions are important in spite of

their uncertainties with related to in-medium effective interactions and/or theoretical

methods used to solve the problem.

In the A=190 mass region there has been a variety of theoretical calculations in the

past mainly using the mean field approach and a variety of interactions. Our interest

in this paper is to investigate the role of the triaxial degree of freedom in this region

emphasizing those features which are independent of the mean field effective interaction

used. To this end, we use the Hartree-Fock-Bogoliubov (HFB) method [21] together

with some of the best effective interactions/functionals present in the market, namely

Gogny D1S [22, 23] Gogny D1N [24] and Skyrme SLy4 [25] to carry out constrained

calculations in the collective β and γ deformation variables in order to obtain the so-

called β − γ planes (potential energy surfaces as a function of the β and γ parameters)

for the chemical species 70Yb, 72Hf, 74W, 76Os and 78Pt and neutron numbers from

N=110 until 122 in steps of two units. In this work we study both the ground state

shape evolution as the number of neutrons increases and the role of triaxiality in these

isotopes. The transition from axially symmetric prolate shapes to axially symmetric

oblate shapes passing through γ-soft triaxial nuclei could illustrate good examples of

the transition from the SU(3) dynamic symmetry of the interacting boson model (IBM)

[26] to the SU(3) symmetry passing across the O(6) dynamic symmetry describing γ-soft

systems. In Section 2 the relevant technical details of the calculation, definitions of the

quantities used and a description of the interactions/functionals used is given. In Section

3 we present results for the 190W and the three interactions/functionals used. Once the

equivalence of the results is stated, the deformation systematics is analyzed by using
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results with D1S and SLy4. In order to get some insight on the relevant configurations

we have also discussed in this region the single particle energies (SPE) both along the

axial and the triaxial degrees of freedom in the paradigmatic 190W case. By using this

single particle plots we get an overall understanding of the evolution of deformation

in this region. We end up this section by comparing the selfconsistent moments of

inertia obtained with the experimental results. Finally, in Section 4 the conclusions are

presented.

2. Solution of the mean field equation and interactions used

2.1. Mean field equation and its solution

To obtain the mean field wave functions we treat pairing correlations in the framework

of the HFB approximation [21]. Taking into account that our aim is to study triaxiality,

breaking of axial symmetry is allowed in the numerical procedure to solve the HFB

equation. On the other hand, the discrete symmetries parity, time reversal, and simplex

are preserved in the calculation. Keeping parity as a good quantum number is not a

severe constraint as octupole deformation effects are not expected to be relevant in the

region under study. Preserving time-reversal restricts the treatment to even-even nuclei

and zero spin (i.e., the ground state). Finally, simplex is a standard symmetry preserved

in almost all the HFB calculations performed up to now [27] as it is supposed to play

essentially no role in the dynamics of the ground state of atomic nuclei. Besides the usual

constraint on the average number of protons and neutrons, which is characteristic of the

HFB approximation, we have constrained the mean value of the quadrupole operators

Q20 = z2 − 1
2
(x2 + y2) and Q22 = x2 − y2, as a way to obtain the standard β − γ plane

of any triaxial study. Instead of the β − γ plane we will plot the Q0 − γ plane where

the deformation parameter β =
√

4π/5Q20/(A〈r2〉) is replaced by

Q0 =
√

Q2
20 + Q2

22.

The γ angle is defined as usual as tan γ = Q22/Q20. With this definition an axially

symmetric prolate mass distribution has a γ = 0◦ value whereas the corresponding

oblate has γ = 60◦.

The single particle energies ǫk whose evolution as a function of both Q20 and γ

degrees of freedom is shown and discussed in length in the next section are obtained as

the eigenvalues of the Hartree-Fock Routhian h′ = t+Γ−λ2Q20−λ22Q22, where t is the

kinetic energy operator, Γ is the Hartree-Fock field and λ2Q20 + λ22Q22 represents the

standard Lagrange multiplier term used to enforce the constraint on the mean values

of the Q20 and Q22 operators. As the HF Routhian preserves parity the single particle

energies are labeled with the parity quantum number. Obviously, for axially symmetric

shapes the last Lagrange multiplier term is missing and also the quantum numbers

labeling the SPE include, in addition to parity, the third component K of the intrinsic

angular momentum operator along the z direction. Also, due to the Coulomb energy
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and the different number of protons and neutrons, the SPE for each kind of nucleon

are different and will be shown separately. Due to time reversal (in the axial case) and

simplex (in the triaxial case) invariance imposed in the calculations, the single particle

energies are doubly degenerate. It is also worth pointing out that the SPE have no

direct physical meaning in the framework of the HFB method but they closely resemble

what would be obtained by performing a pure HF calculation and therefore are useful

quantities when the physics is explained in terms of arguments concerning level densities.

To create continuous lines the non-crossing rule that inhibits the crossing of levels with

the same quantum numbers (K and parity in the case of the plots corresponding to

axially symmetric configurations, and parity alone in the triaxial case) has been used.

As it will be discussed in depth later, we have performed calculations with two

kinds of interactions, namely the Gogny force [22] (D1S [23] and D1N [24]) and the

Skyrme functional (SLy4) [25] in the particle-hole channel plus a zero range and density

dependent interaction [28] in the particle-particle channel. Depending on the interaction

different approaches to solve the HFB equation have been used. In the case of the Gogny

force, the quasiparticle operators have been expanded in a Harmonic Oscillator (HO)

basis big enough (thirteen shells) as to guarantee the convergence of the observable

quantities.

The solution of the HFB equation in the case of the Gogny force has been obtained

by expressing the problem as a minimization process on the mean field energy. With

this in mind, the Thouless parametrization [21] of the most general HFB wave function

has been used to express the HFB energy as a function of the Thouless parameters. The

ones corresponding to the solution of the HFB problem are obtained by minimizing the

energy using standard gradient methods [29]. The advantage of this method of solution is

that the implementation of many constraints (as it is needed in the present calculations)

is straightforward and very easy to implement in a computer code as it only involves

imposing orthogonality of certain vectors. As it is customary in calculations with the

Gogny force [22], the two body center of mass kinetic energy correction has been fully

taken into account in the minimization process. Concerning the Coulomb interaction,

its contribution to the direct mean field potential is fully taken into account. On the

other hand, the Coulomb exchange energy is treated in the Slater approximation and

the contribution of the Coulomb interaction to the pairing field is completely neglected.

In the case of the Skyrme HF+BCS calculations our main tool has been the code

EV8 [30] and we have taken full advantage of its three-dimensional Cartesian lattice

discretization [1, 30] to search for general triaxial solutions. The method used in this

code to solve the HF+BCS equations is the successive iterations one that relies on an

iterative diagonalization of the HF+BCS hamiltonian. For details the reader is referred

to Refs. [1, 30] and for a recent application of this scheme to study both axial and

triaxial ground state shapes is referred to Ref. [10].
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2.2. Interactions and functionals

In the case of the Gogny force [22], two different parametrizations have been used,

namely the D1S [23] and D1N [24] parameter sets. The former was adjusted more

than 30 years ago in order to reproduce several nuclear matter properties of interest as

well as some characteristics of selected spherical nuclei. Finally, a reasonable surface

energy was chosen in order to reproduce the fission barrier heights of the actinides. On

the other hand, the D1N parameter set has been recently proposed with the twofold

aim of having a better reproduction of the equation of state of neutron matter (as a

way to obtain reasonable characteristics in neutron rich nuclei) and reducing the linear

trend observed in the plots of binding energy differences (theory minus experiment)

as a function of neutron or proton numbers. In both cases, the central part of the

interaction is finite range, what allows to use it also to obtain the particle-particle

pairing interaction in a consistent fashion. The predictive power of D1S and its ability

to reproduce low energy experimental data all over the nuclide chart are well established

(see Refs. [10, 31, 32, 33, 34, 35, 36] for some relevant references related to the present

discussion). For D1N still many calculations have to be performed to asses its abilities

but it is quite likely that it will also prove to be a reliable interaction all over the nuclide

chart.

Concerning the Skyrme functional (SLy4) it was also fitted [25] to reproduce

neutron matter properties appropriately and it has proved to give reasonable results

for many observables all over the nuclide chart. For the pairing channel we have used a

zero-range density-dependent pairing interaction (DDPI) [28],

V (r1, r2) = −g
(

1 − P̂ σ
)

(

1 −
ρ(r1)

ρc

)

δ(r1 − r2) , (1)

where P̂ σ is the spin exchange operator, ρ(r) is the nuclear density, and the parameter

ρc = 0.16 fm−3. The pairing’s interaction strength g is taken as g = 1000 MeV fm3 for

both neutrons and protons and a smooth cut-off of 5 MeV around the Fermi level has

been introduced [28, 38]. The motivations for this choice are the very reasonable results

obtained with this combination in systematic studies of correlation energies from 16O to

the superheavies [39] and the nice reproduction of experimental data in global studies

of spectroscopic properties of the first 2+ states in even-even nuclei [40]. Thus, the

predictive power of this combination of effective interactions, has been well established

along the nuclear chart.

3. Results

3.1. The nucleus 190W

The nucleus 190W corresponds to N=116 and it is therefore in the middle of the region of

nuclei studied in this paper. This makes it a good candidate for a detailed explanation

of the kind of results obtained for other nuclei. We have performed calculations for two

different parametrizations of the Gogny force (the old D1S and the newly postulated
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Figure 1. (Color online) Q0 − γ planes computed with the two Gogny parameter sets

used (D1S, left; D1N middle) as well as with the Skyrme SLy4 (right) in the nucleus
190W. The minimum is marked with a small circle. The separation between contour

lines is of 250 keV for the full line blue contours around the minima up to 1.5 MeV. It

is of 0.5 MeV for the dashed line contours with energies from 2 up to 4.5 MeV. Finally,

the furthest away from the minimum, full line contours are separated 1 MeV and span

a range of energies from 5 MeV up to 10 MeV. Note that the Q0 parameter for SLy4

is defined as twice the Q0 used for the Gogny force calculations.

D1N) and the Skyrme SLy4 one with the DDPI pairing force with strength g = 1000

MeV fm3 for both protons and neutrons.

The main results of these calculations are shown in Fig. 1. There, the potential

energy surfaces (PES) in the form of Q0 − γ planes are depicted for the three

interactions/functionals considered. In the three cases, the minimum corresponds to

a triaxial configuration with γ ≈ 30◦ but with a very small depth with respect to the

axially symmetric saddle points (i.e., the prolate and oblate minima obtained when

γ is not considered, and that become saddle points in the extended parameter space

including the γ degree of freedom as a consequence of the emergence of the triaxial

minimum). The depth is of around 300 keV for the D1S force calculation, it is reduced

to around 100 keV for D1N and goes up again up to around 250 keV in the case of

the Skyrme SLy4 functional. As a consequence, the axially symmetric prolate and

oblate saddle points/minima are almost degenerate with the triaxial minimum in the

three cases as can be observed in the small insets depicting the potential energy curves

(PEC) along axially symmetric shapes. Only the SLy4 functional calculation shows a

somehow higher oblate minimum lying at around 1 MeV above the prolate one. It is

also worth mentioning that the spherical configuration in the SLy4 calculation lies at a

higher energy as compared to the prolate minimum than in the case of the Gogny force

calculations. This effect has already been observed in other systematic calculations

in the same region [10] and could be due to different pairing properties of the two

forces/functionals.

We conclude that the Gogny force results using D1S and D1N are very similar and

therefore in the next sections only results with D1S will be presented. On the other

hand, the slight differences observed between the Skyrme functional and Gogny force
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results as well as the intrinsic differences between the two (zero versus finite range,

mainly) warrant the comparison of both results in the subsequent discussions.

3.2. Deformation systematics

In this section we present the systematics of all the nuclei considered and the results

obtained with the two interactions/functionals used. First, we show in Fig 2 the

potential energy curves (PEC’s) obtained with the Gogny D1S force by constraining

on the axially symmetric quadrupole moment both in the prolate (Q20 > 0) and oblate

(Q20 < 0) side. The prolate side is equivalent to the triaxial results obtained with

Q0 = Q20 and γ = 0◦ whereas the oblate side is equivalent to Q0 = |Q20| and γ = 60◦.

The value of Q20 = 10 b roughly corresponds to a β = 0.3 deformation parameter. We

observe how in all the cases there are always a prolate and an oblate minimum even

for the N=122 chain where the prolate minimum is just a mere pocket in the PEC. A

naive interpretation of the presence of the two minima will lead to the conclusion that

two rotational bands, one prolate the other oblate, would be present in the rotational

spectra of the nuclei considered (exception made of some nearly spherical nuclei in the

right lower corner of the figure). As we will discuss below, the effect of triaxiality leads

to substantial modifications on the character of many of the observed minima converting

them into saddle points (see below). The two minima lie quite close in energy in many

cases (shape coexistence) an are separated by a spherical barrier whose height decreases

with increasing Z and N. The fact that the coexisting minima lie at more or less the same

(in absolute value) Q20 parameter, suggests the possibility of a triaxial path connecting

them as it is indeed the case (see below). A prolate to oblate transition is observed at

N=116. This is a very interesting fact, but we defer the discussion of this effect until

the β − γ planes have been presented. Also superdeformed structures can be seen at

the highest deformations considered, they are specially relevant (low excitation energies

as compared to the ground state) the higher the Z value and the lower the N value of

the nucleus are (188Pt). These SD structures will not be discussed in the present paper.

Similar results to these ones but for the SLy4 functional have been discussed in detail

in Ref. [10].

In Fig. 3 the results of the triaxial calculation and obtained with the Gogny D1S

force are presented. In order to simplify the presentation, in the Q0−γ planes presented

the range of Q0 is reduced to half the one computed and the number of contour lines

considered has also been severely reduced by considering contours every 250 keV and

up to an energy 2 MeV higher than the one of the minimum (which is marked with a

small circle). By looking at this picture several general conclusions can be extracted.

The first one is that increasing Z, for fixed N, drives the corresponding nuclei towards

triaxiality in such a way that the Pt isotopes (the ones with the highest Z) are almost

all of them triaxial (the exception are 198−200Pt). Second, by increasing N for fixed Z,

we observe that there is a transition from prolate to oblate shapes. For N=116 and

Z=70 (186Yb) there is a sharp transition from a prolate ground state (N < 116) to an



8

0

5

10

E
 (

M
eV

)

180Yb

0

5

10

E
 (

M
eV

)

182Yb

0

5

10

E
 (

M
eV

)

184Yb

0

5

10

E
 (

M
eV

)

186Yb

0

5

10

E
 (

M
eV

)

188Yb

0

5

10

E
 (

M
eV

)

190Yb

-10 0 10 20
Q20 (b)

0

5

10

E
 (

M
eV

)

192Yb

182Hf

184Hf

186Hf

188Hf

190Hf

192Hf

-10 0 10 20
Q20 (b)

194Hf

184W

186W

188W

190W

192W

194W

-10 0 10 20
Q20 (b)

196W

186Os

188Os

190Os

192Os

194Os

196Os

-10 0 10 20
Q20 (b)

198Os

188Pt

190Pt

192Pt

194Pt

196Pt

198Pt

-10 0 10 20
Q20 (b)

200Pt

Figure 2. Potential energy curves as a function of the axial quadrupole moment Q20

computed with the Gogny D1S interaction for all the nuclei considered. Each row

corresponds to a fixed neutron number ranging from N=110 for the top row up to

N=122 for the bottom one.
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Figure 3. (Color online) Q0 − γ planes computed with the Gogny D1S force for all

the isotopes considered. The range of Q0 considered has been reduced as to focus on

the interval around the minima. The contour lines go from the minimum energy up to

2 MeV higher in steps of 0.25 MeV. Blue contours are the three lowest, green ones the

next three and magenta contours correspond to the three with higher energies.
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oblate one (N > 116). For the neighboring nuclei with Z=72 the same prolate-oblate

shape transition is present but it takes place in a much broader range of neutron number

values involving N=114, 116 and 118 where the ground state is triaxial. For Z=74 the

range of triaxiality extends a little further away up to N=120. For the higher values

of Z (76 and 78 corresponding to Os and Pt) and N=110 the ground state is already

triaxial and it keeps so up to N=122 for Z=76 and N=120 for Z=78 where it becomes

oblate. These conclusions are consistent with other theoretical findings using different

interactions [3, 5, 6, 7, 14, 16]. Concerning the triaxial minimum we can say that it is

in all the cases very shallow and never reaching a depth of more than 0.5 MeV below

the saddle points (see below).

In Fig. 4 we show the HFB energy as a function of the γ deformation parameter

for constant Q0 values (given in each panel) corresponding to the lowest axial minima.

This figure is complementary to Figs. 2 and 3 and is presented here with the aim of

providing a more quantitative understanding of the PES presented. The most striking

conclusion from this figure is that of the two axial minima only one remains in most

of the cases, the other becoming a saddle point. This is manifest in the N=120 and

122 chains where the only remaining minimum is the oblate one (γ = 60◦). For N=118

we have a similar situation but in this case there are two nuclei with only one very

shallow triaxial minimum (192W and and 194Os). In the N=116 chain we have three

shallow triaxial minima for the Hf, W and Os isotopes and a nucleus, 186Yb, showing a

prolate and oblate minima but separated by a quite low barrier. For N=114, we have

three nuclei (Yb, Hf, and W) with prolate and very shallow triaxial minima and the

other two with only one triaxial minimum. For N=112 and 110 the Yb, Hf and W

nuclei only show a prolate minimum whereas the Os and Pt show very shallow triaxial

minima (and a extremely shallow prolate one in 188Os). From the above discussion we

can conclude that in most of the cases only one minimum remains, reducing thereby

by half the number of rotational states to be expected. We can also conclude that due

to the shallowness of many minima a dynamical treatment considering both Q0 and γ

degrees of freedom will be quite relevant for a more quantitative understanding of the

isotopes discussed.

In Fig. 5 we present the Q0 − γ planes computed with the Skyrme SLy4 functional

and for the same nuclei as before. The first and most relevant fact is that, apart from

some details, both pictures (this and Fig. 3) look rather similar. The prolate-oblate

and prolate-triaxial-oblate transitions show up more or less in the same places in both

cases and the contour plot patterns look rather similar. In principle this fact should

not be surprising as the big picture of deformation emerges from the interplay between

two bulk properties, namely the surface energy and the Coulomb repulsion. As both

the D1S force and SLy4 functional are adjusted as to carefully reproduce bulk nuclear

matter properties one could expect a nice agreement between the deformation related

predictions. However, the fine details of deformation are strongly dependent upon shell

effects and pairing properties of the interactions and those are definitely not the same in

D1S and in SLy4. As a consequence of those details we notice that the triaxial minima
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Figure 4. Mean field energies computed with the Gogny D1S force are displayed

as a function of the triaxial deformation parameter angle γ for fixed values of Q0

corresponding to the lowest energy of the axially symmetric configurations.
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Figure 5. (Color online) Same as in Fig. 3 but for SLy4 Skyrme functional.

are typically around 0.8 MeV deeper with SLy4 than with D1S for nuclei with neutron

number greater than 116. Because of this, we find rather deep triaxial minima (around

1.25 MeV and more) in nuclei like 192W and 194Os. We also notice that the N=122

nuclei that were all of them oblate for D1S are now triaxial with SLy4, exception made

of 192Yb, but the depth of the minima never exceed 0.25 MeV so that a pure triaxial

character can not be unambiguously attributed to those nuclei.

From the above discussions we can conclude that the prolate to oblate transition
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N 70Yb 72Hf 74W 76Os 78Pt

110 (0.28,1.0) (0.26,0.0) (0.24,0.0) (0.23,10.0) (0.18,23.8)

112 (0.28,0.0) (0.25,0.0) (0.23,0.0) (0.20,24.3) (0.17,32.6)

114 (0.26,0.0) (0.23,0.0) (0.21,0.0) (0.19,29.7) (0.16,36.2)

116 (0.19,49.3) (0.19,39.5) (0.18,29.2) (0.17,29.4) (0.15,40.4)

118 (0.18,60.0) (0.17,54.0) (0.16,28.3) (0.15,28.2) (0.13,45.0)

120 (0.17,60.0) (0.15,60.0) (0.13,37.4) (0.12,38.0) (0.11,60.0)

122 (0.10,60.0) (0.10,60.0) (0.10,60.0) (0.09,60.0) (0.09,60.0)

Table 1. Deformation parameters (β, γ) for the ground state minimum obtained with

the Gogny D1S interaction.

taking place at N=116 as well as the tendency towards triaxial shapes as proton number

Z is increased for fixed N are genuine predictions as they are present for the two

force/functional considered. On the other hand, and concerning the degree of triaxiality

of the properties of the nuclei showing triaxial minimum the present results are more

uncertain as the depth of the triaxial minima are not deep enough as to make any

quantitative assertion without consider the dynamics of the relevant degrees of freedom.

It is clear that, for a more quantitative description, the fluctuations in the Q0 and γ

degree of freedom have to be incorporated as it has been recently been done [43] in other

regions of the periodic table in the framework of the five dimensional Bohr hamiltonian.

Work along this direction is in progress and will be reported elsewhere.

To finish this section we have included in Table 1 the numerical values of the β

and γ deformation parameters for the ground state solution obtained with the D1S in

a consistent fashion from the same Gogny force. We observe that the ground state β

value decreases as the number of neutrons increase and at the same time the γ parameter

increases. The behavior of β is not surprising because as N increases it comes closer

to the magic number N=126. The behavior with increasing proton number is similar,

and β decreases when Z tends towards the magic value Z=82. On the other hand, no

specific behavior emerges for the values of the γ parameter although in general they

tend to move from axially deformed to γ soft.

3.3. Single particle energies

Now we turn our attention to the SPE plots obtained as a function of the axial

quadrupole moment Q20 for the selected nuclei 184W, 190W and 196W. The SPE plots

obtained for other nuclei and/or other interactions (D1N or SLy4 functional) are quite

similar to the ones depicted here and thus we consider only these as representative

examples. The election is based on the fact that 184W has a prolate ground state, 190W

is triaxial whereas 196W shows a minimum in the oblate side. Then, by looking at the

SPE we hope to find the features that drive these systems towards their characteristic

deformations.
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Figure 6. (Color online) Upper panels: Single particle energies for protons (left

panel) and neutrons (right panel) and the nucleus 190W plotted as a function of the

axial quadrupole moment Q20 for both positive (prolate) and negative (oblate) side.

The Fermi level is depicted in both cases as a thick dashed red line. The results have

been obtained with the Gogny D1S force. Full line curves correspond to levels with

positive parity whereas dashed lines correspond to negative parity states. The color

labeling is as follows and with increasing values of K = 1/2, 3/2, 5/2, . . ., black, red,

green, blue, dark-blue, brown, dark-green, etc. Lower panel: same as above but for

the neutron SPE of 184W (left) and 196W (right).
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The SPE are plotted in Fig. 6 for the three nuclei mentioned. The SPE are depicted

as a function of the axial quadrupole moment Q20 and therefore they correspond to

axially symmetric configurations (both prolate and oblate). Below we will consider also

the behavior of the SPE as a function of the triaxial parameter γ. Only the proton’s

SPE of 190W are plotted as for the other two isotopes they look very similar to the

ones already shown. The SPE levels for axially symmetric configurations are tagged by

the (half integer) K quantum number that corresponds to the third component of the

angular momentum in the intrinsic frame. As a consequence of time-reversal invariance,

orbitals with the same absolute value of K are degenerate (Kramers degeneracy) and

therefore they appear as a single line in the plot. The levels gather together at Q20 = 0

to form the spherical shell model orbitals with quantum numbers nlj. The tags of the

most relevant shell model orbits are indicated in the plot. Finally, the (positive) negative

parity levels are plotted as (full) dashed lines. In the plot corresponding to the protons in
190W we observe the presence of the 3s1/2 level just above the Fermi level and below the

1h11/2, 2d3/2 and 2d5/2. For neutrons and 190W we have the 3p1/2 level above the Fermi

level and an almost degenerate 3p3/2, 2f5/2 and 1i13/2 orbitals just below the Fermi level.

A couple of MeV below we find degenerate 1h9/2 and 2f7/2 orbitals. Those levels evolve

with deformation and at Q20 around 6.6 b a gap in the SPE spectrum signaling a region

of low level density appears both in the proton and neutron spectra that is responsible

for the prolate minimum observed in the axially symmetric potential energy curve (the

minimum becomes a saddle point when the triaxial degree of freedom is considered).

In the oblate side, at Q20 = -6.6 b the neutron’s Fermi level approaches another gap

that is responsible for the oblate minimum observed in the axially symmetric PEC. As

discussed below both minima are in fact saddle points as long as the γ degree of freedom

is considered. In the case of 184W, the SPE spectrum for neutrons show a gap near the

Fermi level for Q20 = 8 b. This fact together with the proton’s gap also observed in that

region of Q20 favors the development of the prolate minimum observed. In the oblate

side, both the neutron’s and proton’s SPE show no gap around the Fermi level in the

relevant range of deformation justifying the lack of such a minimum. For the nucleus
196W we observe how the neutron’s SPE spectrum shows a gap around the Fermi level

for oblate deformations with Q20 in the range between -1 b and -10 b that is responsible

for the oblate minimum observed in this case. Therefore the prolate-oblate transition

seen at N=116 is a consequence of the two gaps in the neutron’s SPE, one in the prolate

and the other in the oblate side as the Fermi level crosses them. On the other hand, the

proton’s SPE spectrum seems to favor the appearance of coexisting oblate and prolate

configurations as Z increases that are the precursors of the triaxial instability observed

in that case.

We can also look at the onset of deformation in this region by using the ideas

developed by Federman and Pittel (FP) [41] in trying to unify the description of

deformation both for light nuclei and heavy ones. A recent study using the same

ideas has been performed in Ref. [42]. in the rare earth region. The argument of

Ref. [41] is that deformation is driven by the T = 0 neutron-proton interaction and this
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is particularly intense between spin orbit partners. Next in the range of relevance of

the n-p interaction strength we find interactions between orbitals with the same radial

quantum number (FP’s argument is written in the language of spherical shell model

orbitals) and large orbital angular momenta differing by one unit (i.e., np = nn and

lp = ln ± 1). By looking at the SPE plots in Fig 6 we find the relevant role of the 1h11/2

orbital for protons which is very close to the Fermi level for all the nuclei considered in

the region. According to FP’s argument this orbital could interact with its neutron spin

orbit partner, namely the 1h9/2 orbital but this one is well below the Fermi level and can

be considered as inert. Near the neutron’s Fermi level we have a 1i13/2, 2f5/2 and 3p3/2.

Obviously, it is the first one that fulfills the above criteria of np = nn and lp = ln ± 1

and therefore is the strongly interacting one with the 1h9/2 orbital. For values of N

around 110 the 1i13/2 is in the middle of the Fermi level favoring the observed prolate

deformation with well established and deep prolate wells. As N increases the 1i13/2 gets

more and more occupied and at some point it ceases to play a role that is transferred

to the 2f5/2 and 3p3/2 orbitals. Among them, only the 2f5/2 can interact with the

2d3/2 of protons but as the l values are low we do not expect a strong interaction.

This explains why as N increases the depth of the deformation wells decreases favoring

triaxial deformations.

To further investigate the origin of triaxiality we have considered, in addition to the

axial SPE plots, also the single particle energies depicted as a function of the γ degree

of freedom and at a Q0 ≡ Q20 value of 6.6 b (that corresponds to the triaxial minimum)

for the 190W nucleus. The triaxial SPE for protons are depicted in Fig. 7 whereas Fig.

8 is for neutrons. In those plots we have sticked together the SPE plots along the axially

symmetric Q20 degree of freedom (leftmost panel for the prolate side, rightmost panel

for the oblate side) with the SPE plots along the triaxial degree of freedom γ (middle

panel). The main reason for this representation is to identify the K values of the triaxial

single particle levels at the axial limits corresponding to γ = 0◦ and γ = 60◦. The first

fact worth mentioning is that the K contents of most of the levels change as γ evolves,

in such a way that in most cases the K value at γ = 0◦ is different from the K value

at γ = 60◦. A typical example, in the proton spectrum is the negative parity level with

K = 1/2 and located at ∼ −5.2 MeV at Q0 = 6.6 b and γ = 0 that becomes at γ = 60◦

degrees a K = 9/2 orbital (originating from the same spherical subshell).

This is a direct consequence of K mixing associated to the triaxial degree of freedom.

We also observe, both in the proton and neutron spectra several avoided level crossings

taking mainly place between γ = 15◦ and γ = 45◦. Concerning the level density around

the Fermi level we observe that the level density of protons is rather low around γ = 30◦

and this fact is driving the system towards the observed triaxial minimum in 190W at

this γ value. On the other hand, the level density of neutrons remains rather high

around the Fermi surface for the whole range of γ values not favoring the development

of a triaxial minimum and indicating a more passive role of neutrons in the generation

of triaxiality. We also notice that the addition of extra protons (to have Os and Pt) will

locate the Fermi level of protons in the middle of the observed gap (at this Q0 value)
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Figure 7. (Color online) In this combined plot, the proton SPE for the nucleus 190W

are plotted. In the left panel the axially symmetric SPE are plotted as a function of

Q20 from Q20 = 0 up to Q20 = 6.6b. In the middle panel the triaxial SPE are plotted

as a function of the γ deformation parameter and for Q0 = 6.6b (the position of the

ground state minimum). Finally, in the right-most panel, the axially symmetric SPE

are plotted as a function of Q20 from Q20 = −6.6b up to Q20 = 0b. In the three cases

the Fermi level is depicted as a thick dashed line. The results have been obtained with

the Gogny D1S force. Some K values are given in the plot.

driving the corresponding system (Os and Pt) to triaxiality as it is observed as a general

rule in the systematics of the Q0 − γ planes discussed previously. Also the less active

role of neutrons in the development of triaxiality is consistent with the systematics of

the Q0 − γ planes as triaxiality seems to depend rather weakly on neutron number.

3.4. Moments of inertia

The moments of inertia of the first 2+ states have been computed for all the nuclei

considered. The quantity computed is the Thouless-Valatin or first moment of inertia

obtained by using the formula J (1) = 3/Eγ, where Eγ = E2+ − E0+ is the γ ray

energy for the 2+ → 0+ decay. The theoretical energies involved in the previous

definitions have been obtained using the selfconsistent cranking method (i.e., using

in the HFB equations a time reversal breaking constraint on the x component of the

angular momentum operator, 〈Ĵx〉 =
√

I(I + 1), which involves a Lagrange term of the
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Figure 8. (Color online) Same as in Fig. 7 but for neutrons.

form −ωĴx, see Ref. [31] for an application with the Gogny force). For the calculations

we have used the Gogny D1S and D1N forces. The reason for this choice is the success of

the D1S parametrization in the description of many high spin-properties over the whole

nuclide chart as well as the scarce number of results available for SLy4. The other

parametrization has been chosen because its pairing properties are slightly different

from the D1S ones and therefore a comparison of the D1S and D1N moments of inertia,

which strongly depend upon pairing, can give a hint on the range of values where one

can expect a reasonable prediction. The results obtained are presented in Table 2 along

with some experimental numbers extracted from the E2+ experimental energies. First of

all, the D1S and D1N results are quite similar, showing a tendency of bigger values for

D1S as a consequence of its slightly reduced pairing correlations as compared to those

of D1N. The more pronounced differences are due to slightly different values of the γ

deformation parameter for the J = 0 ground state. The coincidence of the results give

us confidence on the robustness of our theoretical predictions with respect to a change

in the interaction. Turning now to the results, they indicate an increase of the moment

of inertia in going from neutron number N=110 to N=112 in the lighter isotopes Yb, Hf,

and W as a consequence of the quenching of neutron pairing correlations. This effect is

not observed in the experimental data. From N=112 and up to the maximum neutron

number considered, the moments of inertia decrease as corresponds for a decreasing
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N Yb Hf W Os Pt

110 35.97 32.50 (30.7) 29.24 (27.0) 30.86 (21.9) 25.96

36.09 31.76 29.17 30.17 25.17

112 43.83 35.60 (27.9) 30.71 (24.5) 30.67 (19.4) 25.08

39.41 35.56 31.81 29.92 23.81

114 34.83 28.16 25.38 (21.0) 30.29 24.72

30.19 27.51 25.34 29.38 23.00

116 28.92 29.46 28.87 27.49 23.01

28.72 28.35 26.85 25.80 20.36

118 23.28 24.61 25.73 25.17 19.33

23.09 24.32 23.70 23.04 16.45

120 20.55 17.33 22.05 20.68 13.19

15.43 21.48 21.57 19.70 12.23

122 10.15 10.44 10.52 10.31 9.56

10.05 10.17 10.05 9.69 9.08

Table 2. Static moments of inertia J (1) (in MeV−1) for the first 2+ rotational states

obtained with the Gogny D1S force (upper rows) and D1N (lower rows) and the

selfconsistent cranking method. In parenthesis, in the upper rows the experimental

results for those nuclei with a ratio E4+/E2+ > 3 as to make sure that they are

reasonable rotors.

deformation parameter β (exceptions are the N=116 Hf and W isotopes; they correspond

to the Hf and W isotopes where the onset of triaxial deformation takes place, see Table

1). Regarding the comparison with the experiment we observe that the selfconsistent

cranking results tend to overestimate the experimental values. This is a well known

effect, consequence of too low pairing correlations at the mean field level. The cure

to this deficiency implies the use of beyond mean field techniques in the treatment

of pairing correlations (mainly by restoring the number of particles using projection

techniques) which is out of the scope of this paper. Finally, let us conclude this section

with the following remark: the values of the moments of inertia obtained do not show

any significant and systematic differences when the ground state of the corresponding

nuclei are axially symmetric or triaxial. We conclude that the moment of inertia is not a

good quantity to disentangle the character of the ground state deformation of the nuclei

in this region.

4. Conclusions

We have presented the results of triaxial mean field calculations for several isotopes of the

Yb, Hf, W, Os and Pt nuclear species with neutron numbers ranging from N=110 up to

N=122. The aim is to explore how the ground state deformation evolves in these nuclei.

In order to establish in firm grounds the validity of our findings we have performed

the calculations with two different parametrizations of the Gogny force, D1S and D1N,
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and with the SLy4 parametrization of the Skyrme energy density functional. Those

forces/functionals differ in the range of their central parts as well as in their pairing

properties and therefore it is to be expected that nuclear deformation characteristics

depending upon tiny details of the force/functional will differ in the various calculations.

On the other hand, common characteristics present in the two types of calculations can

be considered as force/functional independent and therefore as more robust predictions.

We have shown that increasing the proton number in this mass region leads the

nuclei to triaxiality. On the other hand, increasing the neutron number, the ground state

shapes in the isotopes studied evolve from axially deformed prolate shapes to axially

deformed oblate shapes. The transitional nuclei (N≈116) exhibit a γ soft behavior with

very shallow triaxial minima. The transition occurs with different degrees of stiffness

depending on the isotope. The transition is rather sharp for the low Z isotopes Yb

and Hf but is much broader for W, Os and Pt where a region of triaxial ground states

develops in between the region of prolate and oblate minima. Several isotopes of W, Os

and Pt develop triaxial minima but their depths, which are rather low in general, depend

strongly on the interaction/functional considered. For this reason, we can only conclude

that triaxial effects will surely play a role in the above mentioned cases but the extent to

which they influence the nuclear spectrum is still uncertain and calculations considering

fluctuations on the deformation parameters (Bohr hamiltonian-like) are needed.

The analysis of the single particle energies both for axially symmetric and triaxial

configurations demonstrates the role of different gaps showing up in the SPE of both

protons and neutrons as well as the role played by the T = 0 proton-neutron interaction.

Concerning the driving force towards triaxiality, we can conclude that in this region

protons play a more relevant role than neutrons.

Finally, the comparison of the selfconsistent moments of inertia shows that this is

not the right quantity to look at in order to disentangle the characteristics of the ground

state deformation of the nuclei in this region.
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