44 research outputs found
Synthetic three-dimensional atomic structures assembled atom by atom
We demonstrate the realization of large, fully loaded, arbitrarily-shaped
three-dimensional arrays of single atoms. Using holographic methods and
real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures
with up to 72 atoms separated by distances of a few micrometres. Our method
allows for high average filling fractions and the unique possibility to obtain
defect-free arrays with high repetition rates. These results find immediate
application for the quantum simulation of spin Hamiltonians using Rydberg atoms
in state-of-the-art platforms, and are very promising for quantum-information
processing with neutral atoms.Comment: 5 pages, 3 figure
Hyperfine Spectroscopy of Optically Trapped Atoms
We perform spectroscopy on the hyperfine splitting of Rb atoms trapped
in far-off-resonance optical traps. The existence of a spatially dependent
shift in the energy levels is shown to induce an inherent dephasing effect,
which causes a broadening of the spectroscopic line and hence an inhomogeneous
loss of atomic coherence at a much faster rate than the homogeneous one caused
by spontaneous photon scattering. We present here a number of approaches for
reducing this inhomogeneous broadening, based on trap geometry, additional
laser fields, and novel microwave pulse sequences. We then show how hyperfine
spectroscopy can be used to study quantum dynamics of optically trapped atoms.Comment: Review/Tutoria
Recommended from our members
Non-structural carbohydrates in woody plants compared among laboratories
Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g⁻¹ for soluble sugars, 6–533 (mean = 94) mg g⁻¹ for starch and 53–649 (mean = 153) mg g⁻¹ for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R² = 0.05–0.12 for soluble sugars, 0.10–0.33 for starch and 0.01–0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g⁻¹ for total NSC, compared with the range of laboratory estimates of 596 mg g⁻¹. Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41–0.91), but less so for total NSC (r = 0.45–0.84) and soluble sugars (r = 0.11–0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by Oxford University Press. The published article can be found at: http://treephys.oxfordjournals.org/Keywords: soluble sugars, starch, particle size, reference method, standardization, non-structural carbohydrate chemical analysis, extraction and quantification consistenc
Fred Wander und die Niederlande
Fred Wander (1917-2006) flüchtete 1938 nach Frankreich, wurde 1942 ins KZ Auschwitz deportiert, 1945 in Buchenwald befreit. Fotograf, Reiseschriftsteller, Journalist in Österreich und der Deutschen Demokratischen Republik, verfasste er mit Der siebente Brunnen (1971) und Hôtel Baalbek (1991) klassische Werke über die Schoah und das Exil. Es ist die Perspektive des Außenseiters, des Nicht-Zugehörigen, die er in seinem Schreiben konsequent verfolgt. In seiner Autobiographie (2006) feierte er das Leben, die "Fröhlichkeit im Schrecken".
Der internationalen Bedeutung des Theodor-Kramer-Preisträgers 2003 entspricht die Internationalität der Beiträge in diesem Buch. Leben, Werk und Wirkungsgeschichte des Autors wird in vielen Aspekten nachgegangen. So ist aus Anlass seines 100. Geburtstages ein Wander-Handbuch entstanden, das profunde Auskünfte gibt und zur weiteren Auseinandersetzung mit Wanders Welt einlädt.
Mit Beiträgen von Martine Benoit, Asher Biemann, Anna Chiarloni, Yvonne Delhey, Stephen D. Dowden, Ute Gerhard, Eberhard Görner, Frank Thomas Grub, Walter Grünzweig, Hans Höller, Maren Horn, Laura John, Hannes Krauss, Erin McGlothlin, Doreen Mildner, Agnes C. Mueller, Karl Müller, Johanna Öttl, Robert Powers, Alfred Prédhumeau, Alfred Prédhumeau, Klemens Renoldner, Beatrice Sandberg, Herbert Sburny, Ulrike Schneider, Anja Thiele, Romy Traeber, Corey L. Twitchell, Silvia Ulrich, Evelin Wander, Emma Woelk, Serge Yow
The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)
Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change.
To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world
Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2
Atmospheric CO2 enrichment may stimulate plant growth directly through enhanced photosynthesis or indirectly, through reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C-3/C-4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here