111 research outputs found

    Effect of CO2 laser irradiation on EudragitÂź L100-55, L100, and S100 coatings to modify drug release

    Get PDF
    The aim of this work was to investigate the use of carbon dioxide (CO2 ) laser irradiation to modify three types of pH-dependent Eudragit¼ (L100-55, L100, and S100) enteric coats with the aim of modulating drug release kinetics from the tablet cores. CO2 laser irradiation causes rapid melting and resolidification/vaporization of materials locally and precisely through the absorption of infrared energy and so can potentially disrupt the barrier integrity and function of enteric coats. It was successfully utilized to shorten the lag time of drug release (T50% and T80% ) during dissolution testing. These changes were mainly caused either by pore formation on the surface of the coating and/or loosening of the film coat. In addition, changes in mechanical properties (Young’s modulus and tensile strengths) and shifted IR peaks of the irradiated coatings were found, which correlated with drug release rates. This work is a proof-of-concept of tailoring drug release profiles by adjusting the power of the laser energy which could be useful for the modification of drug release for personalized medicines

    Virtually Possible: Enhancing Quality Control of 3D-Printed Medicines with Machine Vision Trained on Photorealistic Images

    Get PDF
    Three-dimensional (3D) printing is an advanced pharmaceutical manufacturing technology, and concerted efforts are underway to establish its applicability to various industries. However, for any technology to achieve widespread adoption, robustness and reliability are critical factors. Machine vision (MV), a subset of artificial intelligence (AI), has emerged as a powerful tool to replace human inspection with unprecedented speed and accuracy. Previous studies have demonstrated the potential of MV in pharmaceutical processes. However, training models using real images proves to be both costly and time consuming. In this study, we present an alternative approach, where synthetic images were used to train models to classify the quality of dosage forms. We generated 200 photorealistic virtual images that replicated 3D-printed dosage forms, where seven machine learning techniques (MLTs) were used to perform image classification. By exploring various MV pipelines, including image resizing and transformation, we achieved remarkable classification accuracies of 80.8%, 74.3%, and 75.5% for capsules, tablets, and films, respectively, for classifying stereolithography (SLA)-printed dosage forms. Additionally, we subjected the MLTs to rigorous stress tests, evaluating their scalability to classify over 3000 images and their ability to handle irrelevant images, where accuracies of 66.5% (capsules), 72.0% (tablets), and 70.9% (films) were obtained. Moreover, model confidence was also measured, and Brier scores ranged from 0.20 to 0.40. Our results demonstrate promising proof of concept that virtual images exhibit great potential for image classification of SLA-printed dosage forms. By using photorealistic virtual images, which are faster and cheaper to generate, we pave the way for accelerated, reliable, and sustainable AI model development to enhance the quality control of 3D-printed medicines

    Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics

    Get PDF
    Colonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design. This review provides a modern insight into the key parameters determining the effective design and development of colon-targeted medicines. Influential physiological features governing the release, dissolution, stability, and absorption of drugs in the colon are first discussed, followed by an overview of the most reliable colon-targeted formulation strategies. Finally, the most appropriate in vitro, in vivo, and in silico preclinical investigations are presented, with the goal of inspiring strategic development of new colon-targeted therapeutics

    3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients

    Get PDF
    Visual impairment and blindness affects 285 million people worldwide, resulting in a high public health burden. This study reports, for the first time, the use of three-dimensional (3D) printing to create orally disintegrating printlets (ODPs) suited for patients with visual impairment. Printlets were designed with Braille and Moon patterns on their surface, enabling patients to identify medications when taken out of their original packaging. Printlets with different shapes were fabricated to offer additional information, such as the medication indication or its dosing regimen. Despite the presence of the patterns, the printlets retained their original mechanical properties and dissolution characteristics, wherein all the printlets disintegrated within ~5 s, avoiding the need for water and facilitating self-administration of medications. Moreover, the readability of the printlets was verified by a blind person. Overall, this novel and practical approach should reduce medication errors and improve medication adherence in patients with visual impairmentThe authors thank the Engineering and Physical Sciences Research Council (EPSRC), UK, for their financial support (EP/L01646X)S

    Accelerating 3D printing of pharmaceutical products using machine learning

    Get PDF
    [Abstract] Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput

    3D printed pellets (miniprintlets): A novel, multi-drug, controlled release platform technology

    Get PDF
    [ENG]Selective laser sintering (SLS) is a single-step three-dimensional printing (3DP) process that can be leveraged to engineer a wide array of drug delivery systems. The aim of this work was to utilise SLS 3DP, for the first time, to produce small oral dosage forms with modified release properties. As such, paracetamol-loaded 3D printed multiparticulates, termed miniprintlets, were fabricated in 1 mm and 2 mm diameters. Despite their large surface area compared with a conventional monolithic tablet, the ethyl cellulose-based miniprintlets exhibited prolonged drug release patterns. The possibility of producing miniprintlets combining two drugs, namely paracetamol and ibuprofen, was also investigated. By varying the polymer, the dual miniprintlets were programmed to achieve customised drug release patterns, whereby one drug was released immediately from a Kollicoat Instant Release matrix, whilst the effect of the second drug was sustained over an extended time span using ethyl cellulose. Herein, this work has highlighted the versatility of SLS 3DP to fabricate small and intricate formulations containing multiple active pharmaceutical ingredients with distinct release propertiesS

    Printing Drugs onto Nails for Effective Treatment of Onychomycosis

    Get PDF
    Inkjet printing (IJP) is an emerging technology for the precision dosing of medicines. We report, for the first time, the printing of the antifungal drug terbinafine hydrochloride directly onto nails for the treatment of onychomycosis. A commercial cosmetic nail printer was modified by removing the ink from the cartridge and replacing it with an in-house prepared drug-loaded ink. The drug-loaded ink was designed so that it was comparable to the commercial ink for key printability properties. Linear drug dosing was shown by changing the lightness of the colour selected for printing (R2 = 0.977) and by printing multiple times (R2 = 0.989). The drug loads were measured for heart (271 ”g), world (205 ”g) and football (133 ”g) shapes. A disc diffusion assay against Trpytophan rubrum showed inhibition of fungal growth with printed-on discs. In vitro testing with human nails showed substantial inhibition with printed-on nails. Hence, this is the first study to demonstrate the ability of a nail printer for drug delivery, thereby confirming its potential for onychomycosis treatment

    Advancing oral delivery of biologics: machine learning predicts peptide stability in the gastrointestinal tract

    Get PDF
    The oral delivery of peptide therapeutics could facilitate precision treatment of numerous gastrointestinal (GI) and systemic diseases with simple administration for patients. However, the vast majority of licensed peptide drugs are currently administered parenterally due to prohibitive peptide instability in the GI tract. As such, the development of GI-stable peptides is receiving considerable investment. This study provides researchers with the first tool to predict the GI stability of peptide therapeutics based solely on the amino acid sequence. Both unsupervised and supervised machine learning techniques were trained on literature-extracted data describing peptide stability in simulated gastric and small intestinal fluid (SGF and SIF). Based on 109 peptide incubations, classification models for SGF and SIF were developed. The best models utilized k-Nearest Neighbor (for SGF) and XGBoost (for SIF) algorithms, with accuracies of 75.1% (SGF) and 69.3% (SIF), and f1 scores of 84.5% (SGF) and 73.4% (SIF) under 5-fold cross-validation. Feature importance analysis demonstrated that peptides’ lipophilicity, rigidity, and size were key determinants of stability. These models are now available to those working on the development of oral peptide therapeutics
    • 

    corecore