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A B S T R A C T   

Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to 
fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical 
process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that 
machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for 
optimal predictive performance of machine learning (ML) models, but data available from published literature 
often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) 
and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 
formulations. The optimized ML models predicted the printability and filament mechanical characteristics with 
an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 ◦C 
and 8.4 ◦C, respectively. The performance of these ML models was better than previous iterations with a smaller 
and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset 
for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, 
that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and 
drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM- 
printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation 
development, facilitating higher pharmaceutical 3DP research throughput.   

1. Introduction 

3D printing (3DP), or additive manufacturing, is a contemporary 
manufacturing technique by which a 3D object is fabricated layer-by- 
layer based on a computer-aided design (CAD) model. According to 
the American Society for Testing and Materials (ASTM), 3DP technolo
gies are sub-divided into 7 categories: material extrusion, material 
jetting, binder jetting, powder bed fusion, sheet lamination, vat photo
polymerization, and directed energy deposition (American Society for 
Testing and Material, 2021). Amongst these, Fused Deposition 

Modelling (FDM) – a type of material extrusion 3DP – is the most 
common technique due to its low cost, simple operation, and non-toxic 
feedstock (Cailleaux et al., 2021; Elbadawi et al., 2021c). In FDM 3DP, 
filaments are first made by hot melt extrusion (HME), wherein a mixture 
of powders is poured into an extruder that applies heat and shear stress 
and extrudes the molten material through a nozzle to form a filament 
(Cailleaux et al., 2021; Fanous et al., 2021). The filament is subsequently 
fed into an FDM 3D printer, where it is heated again through a nozzle 
and deposited on a build plate, tracing a 2D pattern as pre-defined by the 
uploaded CAD model. The molten filament is deposited layer-by-layer, 
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until the entire 3D geometry is built. The simplicity and versatility of 
FDM 3DP has led to its adoption in numerous industries, including the 
healthcare sector (Dumpa et al., 2021; Seoane-Viaño et al., 2021). Ap
plications of FDM 3DP in the medical field include patient-specific organ 
replicas for surgery preparation, surgical instruments, custom-made 
prosthetics, personal protection equipment, and pharmaceuticals 
(Aimar et al., 2019; Fan et al., 2020; Kholgh Eshkalak et al., 2020; 
Martin et al., 2021). 

Pharmaceutical 3DP has garnered considerable research interest for 
its ability to fabricate medicines with size, geometry, release profiles and 
dose tailored to an individual's specific clinical needs (Capel et al., 2018; 
Seoane-Viaño et al., 2021). Specifically, the simplicity and low cost of 
FDM 3DP has led to the general view that it may be the technology to be 
clinically adopted to produce personalized medicines. Enthusiasm to
wards FDM 3DP amongst pharmaceutical researchers has been demon
strated by its use to manufacture a range of drug delivery devices, 
including 3D printed tablets (Printlets) (Bogdahn et al., 2021; Figueir
edo et al., 2022; Isreb et al., 2019; Melocchi et al., 2021; Oladeji et al., 
2022; Pereira et al., 2020; Shi et al., 2021; Tranová et al., 2022; Windolf 
et al., 2022), gastro-retentive tablets (Zhao et al., 2022), microneedles 
(Wu et al., 2021), and patient-specific devices (Arany et al., 2021; 
Carlier et al., 2021; Eleftheriadis and Fatouros, 2021; Eleftheriadis et al., 
2020; Haddow et al., 2021; Liang et al., 2018; Saviano et al., 2022). 
While interest in pharmaceutical 3DP continues to grow, with phar
maceutical companies such as Aprecia and Triastek investing in the 
technology, progress is arguably hampered by the empirical process of 
formulation development (Elbadawi et al., 2021b; Seoane-Viaño et al., 
2021). The entire process of HME and FDM 3DP typically involves 
iterative adjustments to the formulation composition and/or numerous 
printing parameters such as the extrusion speed and temperature, the 
printing speed and temperature, the layer height, the percentage infill, 
and the platform temperature (Đuranović et al., 2021; Govender et al., 
2021; Henry et al., 2021; Zhang et al., 2021). Given the multifactorial 
nature of HME and FDM 3DP, conventional systemic methods of eval
uating each input variable on printing success (i.e., based on design of 
experiments) can be time-consuming. The large amount of data derived 
from almost a decade of pharmaceutical 3D printing research contains 
critical yet convoluted information that could accelerate formulation 
development if structured and unraveled (Crișan et al., 2022; Elbadawi 
et al., 2021c; Manini et al., 2022). 

Machine learning (ML) is an application of artificial intelligence (AI) 
that enables pattern recognition from large and complex datasets. ML 
has garnered considerable interests and accolades in recent years owing 
to its success in affording actionable insights across disciplines that 
humans and conventional strategies struggle or fail to provide (Kourou 
et al., 2015; Libbrecht and Noble, 2015; Sarker, 2021). For instance, 
Google DeepMind's AlphaFold predicts the 3D morphology of proteins 
based on their amino acid sequence, providing computational biologists 
time and resource savings compared to conventional approaches such as 
X-ray crystallography (Callaway, 2020). In healthcare, ML-powered 
products are increasingly receiving regulatory clearance, with a 2020 
study finding that AI/ML systems are winning approval from the US 
Food and Drug Administration (FDA) at an accelerating rate (Benjamens 
et al., 2020; Rajpurkar et al., 2022). The transformative effect that ML 
has had on other industries has prompted the pharmaceutical industry to 
identify opportunities to re-invent traditional time-consuming processes 
in bringing medicines into market (Abramov et al., 2022; Elbadawi 
et al., 2021a; Kolluri et al., 2022; Lou et al., 2021; Paul et al., 2021; 
Thomas et al., 2021; Yang et al., 2019). 

In our previous studies, we reported an AI-based web application, 
named M3DISEEN, that employed five ML techniques to accelerate the 
development of HME and FDM formulation development. The ML 
models utilized a dataset comprising 614 drug-loaded formulations 
produced by researchers from University College London - School of 
Pharmacy to predict three parameters: processing temperatures (extru
sion and printing temperatures), feedstock characteristic, and 

printability (Elbadawi et al., 2020). The dataset, while containing a 
sizeable amount of negative data, was limited by its small size. To obtain 
a larger dataset, we extracted and utilized 980 3D printed formulations 
from published literature to predict the aforementioned parameters and 
the drug release profiles of the printed devices (Muñiz Castro et al., 
2021). Simulations of drug release profiles were found to be accurate 
and is expected to provide significant time saving as pharmaceutical 
researchers could now optimize their product design without having to 
physically print and test them – a process that would have taken days for 
each iteration. While learning performance improved from our initial 
work, the models were hampered by positively biased reporting in the 
literature data, unsurprisingly given the motivation of researchers to 
only publish good results. The lack of negative data is not ideal for 
training ML models, as they tend to learn only from a single class. 
Therefore, combining the literature-mined dataset with in-house data 
could provide the breadth and balance necessary for optimal ML 
performance. 

The present study aims to enhance the performance of various ML 
techniques, using data from in-house printing experiments and data 
mined from published literature, in predicting FDM 3DP processing 
temperatures, printability, and filament mechanical characteristics. 
Subsequently, an updated AI-based web application was developed 
utilizing the new combined dataset to provide predictions on filament 
mechanical characteristics, extrusion temperature, printability, printing 
temperature, and drug release profiles (https://m3diseen.com/predic 
tionsFDM/). 

2. Materials & methods 

2.1. Data 

The dataset used for the study was derived from two different sources 
of data. Foremost, data on in-house formulations, comprising 64 mate
rials and 614 formulations, were used as described in the previous study 
(Elbadawi et al., 2020). This was supplemented with 254 materials and 
980 formulations that were mined from 114 published articles between 
Jan 1, 2013, and November 30, 2020 (Muñiz Castro et al., 2021). The 
variables included within the dataset can be divided into three groups: 
material variables (described in Section 2.2), which refers to the materials 
used for a formulation; process-related parameters (described in Section 
2.3), which are related either to the hot melt extrusion process or to the 
FDM 3D printing process; and finally, the predicted target variables 
(described in Section 2.4), which are the variables that the ML models 
are built to predict. 

2.2. Feature set selection and creation 

Five feature sets used herein were material with company name, ma
terial, material type, physical properties, and physical properties per material 
type. The feature sets differ in how the information about the materials 
used in the formulation is represented and were created as previously 
reported (Elbadawi et al., 2020). Material with company name uses the 
weight fraction of each material as input (Fig. 1). On the other hand, 
Material treats same materials from different suppliers as the same ma
terial; in other words, materials are grouped by their name, disregarding 
the supplier company. The feature set material type also groups materials 
in the same way but by their chemical structure. The physical properties 
feature set uses the weighted glass transition temperature, melting 
temperature and molecular weight as inputs (Fig. 2). The values for the 
properties are computed as a weighted average using the weight fraction 
and the properties of each material used in each formulation. In cases 
where the physical property of the material is unknown, the weighted 
average is calculated using only the weight fraction and the properties of 
the remaining materials that make up the formulation. The final feature 
set is a combination of physical properties and material type, where the 
materials are grouped by their chemical structures and the input is the 
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weighted physical properties for each group. Schematics illustrating the 
creation of the feature sets are presented in Figs. 1 and 2. 

2.3. Process-related parameters 

Information on the extrusion and the printing process were also re
flected in the dataset. This includes printing parameters such as the 
extrusion speed or the printing speed as well information about the 
equipment such as the type of extruder used, or the brand of the printer 
used. These variables are described in Table 1. In addition to being 
process-related parameters, both extrusion temperature and printing tem
perature are also predicted target variables. 

2.4. Predicted target variables 

The key parameters that the study aimed to predict were the extru
sion temperature, filament mechanical characteristics, printing tem
perature and printability (Table 2). These are referred to as targeted 
variables. 

Regression analyses were performed to predict HME temperature 
and FDM printing temperature, since the targeted variables were 
continuous numerical values. Classification analyses were performed to 
predict the filament mechanical characteristics and printability (Elba
dawi et al., 2020). The labels used for filament mechanical behavior 
were either ‘good’, ‘brittle’, ‘flexible’ or ‘unextrudable’ based on the 
comments found in the reported studies. Good filament referred to a 
filament with mechanical behavior similar to commercial filaments. A 
brittle filament was defined as one that was susceptible to fracturing 
when it was bent from 180◦ to 90◦. A flexible filament was one that 
easily bent when held from one side, due to a lack of structural integrity. 
Filaments that could not be obtained by HME, even when tested over a 
wide range of HME temperatures, were labelled as unextrudable. 
Printability was qualitatively classified as either ‘Yes’ or ‘No’ depending 
on whether the filament was able to be extruded through the nozzle of 
the FDM printer given the selected printing parameters. 

Fig. 1. Schematic illustrating how materials were classified in the feature sets material, material name and material type.  

Fig. 2. Schematic illustrating how the feature sets physical properties and physical properties per material type were created.  
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2.5. Machine learning techniques 

A computer running an Ubunto 20.04.2 LTS operating system, with 
an Intel® Xeon® CPU E5620 (2.40 GHz) CPU and an installed RAM 
memory of 32 GB, was used for data analysis and development of ML 
models as described below. 

Three machine learning techniques (MLTs) were used: artificial 
neural networks (ANN) (Nagy et al., 2019), support vector machines (SVM) 
(Noble, 2006; Wang et al., 2022), and random forests (RF) (Belgiu and 
Drăguţ, 2016). Explanation on each MLT can be found in our previous 
study (Elbadawi et al., 2020). These were developed using python 
(version 3.8.10) with the Scikit-Learn package (scikit-learn, v1.0.1). A 
75:25 split was used for training and testing the MLTs. 

Before training any machine learning model, any formulation with 
missing data was removed. Both numerical and categorical input data 
was pre-processed and transformed (Nawi et al., 2013). Quantile 
transformation was applied to numerical variables for them to have a 
Gaussian distribution, which is known to have a positive impact in the 
performance of the trained machine learning models. On the other hand, 
categorical variables were label encoded, which simply replaces each 
possible categorywith a unique number. 

In addition to the feature sets described in Section 2.2, other process- 
related parameters such as the extrusion or printing speed were also 
used to develop the ML models. Each possible set of process-related 
parameters was evaluated on the MLTs using all the feature sets 
described in Section 2.2 using a 50-random cross validation process. 
This was done for each target variable, as described in Section 2.4. The 
set of process-related parameters, feature set and MLT that gave the best 
performance (as described in Section 2.6) was obtained. 

Upon identifying the best performing combination of process-related 
parameters, feature sets, and MLT, the best set of hyper-parameters for 

each algorithm was determined. A fixed set of possible values for each 
hyper-parameter was pre-defined (Table S1). Then, each possible com
bination of values for the hyper-parameters was tested using a 10-fold 
cross validation process. 

2.6. Data evaluation 

The performance of each MLT was evaluated based on numerous 
metrics depending on the type of analyses being conducted. A brief 
explanation of each metric can be found in our previous study (Elbadawi 
et al., 2020). For classification analyses, five classification metrics were 
used: accuracy, Cohen's kappa, precision, recall, and F1. For the process
ing temperature and dissolution time predictions, two regression metrics 
were used: the mean absolute error (MAE) and the coefficient of determi
nation (R2). 

3. Results & discussion 

3.1. Exploratory data analysis 

An exploratory data analysis was performed to detect anomalies and 
identify the data pre-processing steps necessary for better machine 
learning performance. The combined dataset, comprising in-house and 
literature mined formulations, consists of 1594 formulations and 260 
materials. This combination produced a more diverse dataset, with a 
broader variety of formulations and range of printing outcomes. 
Conversely, the diversity of materials remained relatively unchanged, 
since most materials used in in-house formulations were also used in 
formulations found in published literature. As shown in Fig. 3, the 
availability of these process-related parameters in the dataset is very 
heterogeneous. As formulations with missing data must be removed yet 
information about each formulation needs to be retained as much as 
possible, a balance between the number of parameters included as input 
and the amount of data preserved for training was evaluated. To do so, 
an exhaustive analysis was performed to determine the optimal set of 
process-related features. To minimize the loss of data, any combination 
that resulted in a loss greater than 25% of the original number of for
mulations was disregarded. 

Analysis of HME parameters revealed that 93.1% of formulations had 
the extrusion speed used for preparing filaments reported, of which 
49.4% of filaments were extruded at a speed of 15 RPM. Extrusion speed 
ranged between 1 and 200 rpm (Fig. 4A). In contrast, only 15.0% of data 
reported extrusion torque, and was therefore excluded from analysis. 
The lack of reporting on extrusion torque values is likely due to the 
inability to conveniently measure the parameter on the most used hot 
melt extruders. The extrusion temperature used for HME ranged from 
22 ◦C to 210 ◦C, with a mean of 123.8 ◦C (Fig. 4B). 

66.0% of formulations resulted in filaments with mechanical char
acteristics that were described as “Good” (Fig. 5). This represents a more 
balanced dataset compared to that derived from literature-mined for
mulations only, with 84.6% of the latter reporting “Good” filaments. As 
observed in the previous study, most filaments with “Good” mechanical 
characteristics were printable, while printing outcomes with “Brittle” 
and “Flexible” filaments were almost evenly split (Fig. 5). 

Amongst formulations that were extrudable (i.e., the filaments were 
either “Good”, “Brittle” or “Flexible”), 81.2% of the derived filaments 
were fed through FDM 3D printers equipped with 0.4 mm diameter 
nozzles. The size of nozzle diameter ranged from 0.2 to 0.5 mm. The 
printing speed ranged between 0.5 mm/s to 500 mm/s, with 90 mm/s 
being the most used printing speed (52.9% of filaments fed into an FDM 
3D printer). As illustrated by the boxplot, printing speeds above 100 
mm/s represent a small minority of tested formulations (Fig. 6A). These 
were nonetheless included in analysis as they were actual trials and do 
not represent statistical outliers. The FDM printing temperature used 
ranged from 53 ◦C to 240 ◦C, with a mean of 174.3 ◦C. Likewise, the 
boxplot depicts a notable number of outliers at temperatures below 

Table 1 
Summary of the process-related variables.  

Variable Description 

Extruder brand Model and company of the hot melt extruder used. 
Extruder type Number of screws that are inside the hot melt extruder 

chamber (i.e., single or twin-screw extruder). 
Extrusion 

Temperature (◦C) 
Temperature at which hot melt extrusion was conducted, as 
measured by the thermocouple located at the nozzle of the 
extruder. 

Extrusion Speed 
(RPM) 

Speed of rotation of the screws in the chamber of the 
extruder. 

Extrusion Torque (N. 
cm) 

The force exerted by the rotation of the extruder screws on 
the powder mix. 

Printer Brand Model and company of the 3D printer used. 
Printing Temperature 

(◦C) 
Temperature at which the filaments are heated and 
extruded through the 3D printer nozzle, as measured by the 
thermocouple located at the nozzle of the 3D printer. 

Printing Speed (mm/ 
s) 

Speed at which the printer head moves. 

Platform Temperature 
(◦C) 

Temperature of the build plate on which heated filaments 
are deposited on and the 3D object is made. 

Nozzle Diameter 
(mm) 

Size of the orifice through which heated filaments were 
extruded from on the 3D printer. 

Object Type of device that was being printed (e.g., tablet, film, 
etc.). 

Shape General description of the 3D geometry that was printed.  

Table 2 
Summary of the predicted targeted variables.  

Targeted variables Values Analysis Type 

Extrusion temperature HME temperature (◦C) Regression 
Filament mechanical 

characteristics 
Unextrudable, Flexible, Good 
or Brittle 

Multi- 
classification 

Printing temperature Printing temperature (◦C) Regression 
Printability Yes or No Binary 

Classification  
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approximately 110 ◦C (Fig. 6B). As this information may benefit re
searchers investigating printing at low processing temperatures for 
thermally labile drugs, these were retained in the dataset. The platform 
temperature used, which affects printing outcomes by influencing the 
adhesion of feedstock onto the platform, ranged between 16 ◦C to 
115 ◦C, with a temperature of 25 ◦C (room temperature) being most used 
(Fig. 6C). 71.6% of formulations reported in the dataset used in this 
study were printable, compared to 85.7% in the literature-mined data
set. The greater diversity in HME and printing outcomes compared to 
previously used datasets provides more negative samples for MLTs to 

learn from, conceivably leading to better prediction performance. 

3.2. MLT performance in predicting target variables 

3.2.1. Filament mechanical characteristics results 
For predicting the mechanical characteristics of extruded filaments, 

the algorithm that performed the best was RF (Fig. 7). The best feature 
set was material name and the optimal set of process-related parameters 
included were extruder brand, extruder type, extruder company, and 
extrusion temperature. 

Fig. 3. Diagram representing the dataset, used to illustrate the missingness of the data for each of the 1594 formulations. Blue indicates information was available, 
whereas white areas indicate missing data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Histograms depicting distribution of (A) extrusion speed and (B) extrusion temperature.  
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The optimal hyper-parameters obtained for the random forest are 
shown in Table 3. The optimized RF model obtained the following scores 
in the final evaluation: an accuracy of 84%, a Cohen's kappa of 0.69, an f1 
score of 0.72, a recall of 0.69 and a precision of 0.75. The RF model ob
tained in this study outperformed the optimized model using only in- 

house data, in which the highest obtained accuracy and kappa value 
were 73% and 0.61, respectively. Additionally, the current model 
attained a higher kappa value than the model optimized using literature- 
mined data alone (κ = 0.49), although the accuracy obtained was lower 
than that of the latter (accuracy = 91%). However, considering that the 
literature-mined data represents a more imbalanced dataset, comparing 
the accuracy of the two models does not correctly reflect their relative 
performance. With the literature-mined data containing a larger per
centage of filaments with “Good” mechanical characteristics (as 
described in Section 3.1), a model built on this dataset that simply as
signs all formulations as “Good” would naturally obtain a higher accu
racy score than a model built on the combined dataset. Therefore, using 
the kappa value, which factors in the probability of chance agreement (i. 
e., a baseline value), would provide a better comparison of the perfor
mance of the two optimized models. As such, the results demonstrate 
that the use of a larger and more diverse dataset results in improve 
performance by machine learning models. 

3.2.2. Extrusion temperature results 
When predicting extrusion temperature, only formulations derived 

from filaments with mechanical characteristics that were recorded as 
“Good” were used. RF was the best performing MLT for predicting the 
extrusion temperature, obtaining the highest R2 amongst the MLTs 

Fig. 5. Sankey diagram showing distribution of extrusion and print
ing outcomes. 

Fig. 6. Histograms depicting distribution of (A) printing temperature, (B) platform temperature, and (C) printing speed.  
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explored using all five feature datasets (Fig. 8). The best prediction re
sults using RF were obtained when using the material name feature set 
together with the following set of process-related parameters: extruder 
brand, extruder type, extruder company and extruder location. 

The optimal values for each hyperparameter for the random forest 
algorithm to predict the extrusion temperature are shown in Table 3. 
Subsequently, the optimized RF model obtained a MAE of 5.54 ◦C and an 
R2 of 0.91. This model outperformed the previous model built on in- 
house data alone, which obtained a MAE and R2 of 10.8 ◦C and 0.56, 
respectively. However, while the current model achieved a higher R2 

than the model built on only literature-mined data (R2 = 0.90), the 
lowest MAE obtained by the current model is larger than that of the 
latter (MAE = 5.18 ◦C). This suggests that, although the difference be
tween the two is small, the new model is less accurate in the small-scale 
(less than 1 ◦C) but makes fewer large-scale errors, which are more 
penalized by R2. 

3.2.3. Printing temperature 
Akin to extrusion temperature predictions, only formulations that 

were printable (i.e., labelled as “yes” for printability) were used for 
building the prediction models for printing temperatures. RF performed 
the best in predicting printing temperature (Fig. 9), outperforming the 
other models tested using all five feature sets. The feature set that pro
vided the best prediction was material with company name and the 
selected process-related parameters were printer brand, printer company, 
printer location, object, and shape. 

The hyperparameter values that provided the best performance using 
RF are shown in Table 3. The optimized random forest model obtained a 
MAE of 5.99 ◦C and a R2 of 0.88 in the final evaluation. The current 
model outperformed the performance of models built on in-house data 
alone (R2 = 0.83, MAE = 8.4 ◦C) and those built on literature-mined data 
only (R2 = 0.86, MAE = 6.87 ◦C). Considering that the printing tem
peratures ranged between 53 and 240 ◦C, the ability to predict the 
optimal printing temperature within ±5.99 ◦C is impressive and would 
yield significant time saving in formulation and printing development. 

Fig. 7. Radar plot with metrics results for filament mechanical characteristics. RF – random forests, ANN – artificial neural networks, SVM – support vec
tor machines. 

Table 3 
Optimal hyper-parameters for random forest predicting the respective target 
variables.  

Parameter Filament 
mechanical 
characteristics 

Extrusion 
temperature 

Printing 
temperature 

Printability 

Bootstrap False False False False 
Maximum 

depth for 
trees 

Unlimited Unlimited Unlimited Unlimited 

Maximum 
features 
for trees 

√n √n √n √n 

Minimum 
samples 
for leafs 

1 1 1 1 

Minimum 
samples 
for split 

5 2 2 5 

Number of 
trees 

400 800 1000 400  

Fig. 8. R2 for extrusion temperatures using the different ML techniques and 
feature sets (horizontal axis). RF – random forests, SVM – support vector ma
chines, ANN – artificial neural networks. 
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3.2.4. Printability 
Once again, RF provided the best performance for predicting the 

printability of formulations (Fig. 10). The feature set that produced the 
best performance metrics was physical properties per material type 
together with the following set of process-related parameters: printer 
brand, printer company, printer location, printing speed, object, and shape. 

The results of the hyper-parameter optimization process for the al
gorithm are shown in Table 3. The trained random forest obtained the 
following scores in the final evaluation: an accuracy of 84%, a Cohen's 
kappa of 0.66, a f1 score of 0.80, a recall of 80% and a precision of 81%. 
This outperformed the model that used in-house data only (κ = 0.52) and 
that using literature-mined data only (κ = 0.56). This further supports 
the need for balanced datasets for machine learning models to provide 
accurate and reliable predictions. 

3.3. General considerations 

The optimized ML models were integrated in a web application 
service that is easily accessible from any device with internet connec
tivity via the following link (https://m3diseen.com/predictionsFDM/) 
(Fig. 11). The application is hosted on a standard server, using the open- 
source software Caddy 2 for serving a web application written in 

Python3 using the Django web framework. The web application and web 
server modules run as Docker containers on a Docker server (version 
20.10.7) The machine learning models were integrated and functional
ized using the scikit-learn package. 

On the web application, users will be prompted to select the material 
they are using from a pre-defined list and specify the proportion (in % w/ 
w) included in the formulation. Users may add materials until the 
formulation composition reaches 100% w/w, for which the color of the 
bubble around the total weight composition (under the “Current mate
rials” tab) will turn green. Entering a formulation composition that is 
more or less than 100.00% w/w will disable the “Complete prediction” 
button. Users may also access and specify other parameters that may 
influence prediction by clicking the drop-menu adjacent to the “Other 
parameters” heading. These parameters include the extruder brand, the 
object and shape to be printed, and the dissolution media volume and 
pH. Upon clicking “Complete prediction”, the filament's mechanical 
characteristics, extrusion temperature, printability, printing tempera
ture, and dissolution profile of the resulting object, will be provided in 
the bottom right window. Dissolution predictions are based on the 
literature-mined only dataset, as reported in our previous work (Muñiz 
Castro et al., 2021). The web application was able to provide all 5 pre
dictions within 5.76 ± 1.24 ms. As such, this easily accessible platform 
provides quick remote feedback on the performance of experimental 
formulations, affording researchers considerable time savings in 
formulation development and optimization. 

This study integrated data from published articles and in-house data 
to produce a more balanced dataset, which was subsequently used to 
produce ML models that performed better than those created in previous 
studies. Due to the input of more negative data (especially with regards 
to filament mechanical characteristics), higher predictive performances 
were obtained in this study. Further improvement in performance is 
therefore expected with more negative data, especially on filaments that 
were not printable. As data is obtained from a range of laboratories using 
different equipment and methodologies, the primary challenge would be 
to standardize reporting so that the degree of missingness in the overall 
dataset may be reduced. At the minimum, we implore authors to report 
the parameters enumerated in Table 1, although additional information 
such as the size of the printed object and the dissolution parameters may 
be useful for future applications. Future work will aim to build a plat
form wherein pharmaceutical 3DP researchers may easily share their 
data in a comprehensive and structured manner. 

Fig. 9. R2 for printing temperatures using the different ML techniques and 
feature sets (horizontal axis). RF – random forests, SVM – support vector ma
chines, ANN – artificial neural networks. 

Fig. 10. Radar plot with metrics results for printability. RF – random forests, ANN – artificial neural networks, SVM – support vector machines.  
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Random forest emerged as the best MLT for predicting all targeted 
variables in this study. However, this finding may, and will likely, not be 
the case for every dataset containing FDM 3DP and HME formulations. 
Every MLT has their own advantages, and the best performing MLT 
might change as the dataset mutates. For regression analyses (extrusion 
temperature and printing temperature), there is a reason why RF per
formed particularly well. As a tree-based algorithm, RF lacks extrapo
lation. Predicted values given by tree models are the mean of a set of 
previously seen training examples that share some pattern with the 
input, which makes them unable to predict values outside the distribu
tion in which they have been trained. This, which is normally a 

disadvantage, may have turned out to be an advantage in the case of our 
dataset. Extrusion and printing temperatures, vary in a relatively small 
range, and tend to repeat round values like 115 ◦C, 120 ◦C, 125 ◦C, etc. 
For example, we have more than 100 formulations with an extrusion 
temperature of 100 ◦C and more than 60 with 105 ◦C, but no formulation 
between 101 ◦C and 104 ◦C. When evaluating the predictions against a 
test set, RF output is often very close to previously seen round values, in 
this case usually matching test set values, while ANN output approxi
mates a more continuous distribution. As the dataset grows, we expect 
ANN to become a feasible technique to be employed to give the best 
predictive performance, given that it has consistently outperformed 

Fig. 11. Screenshot of (A) landing page of web application, and (B) input parameters that users may manipulate upon clicking the drop-down menu.  
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MLTs such as RF and SVM (Castiglioni et al., 2021; Zhang et al., 2017). 
However, a large dataset on the scale of tens of thousands to millions of 
data points is necessary, which in turn necessitates further formulation 
attempts and open reporting within the pharmaceutical 3DP commu
nity. While it is understandable that the value of reporting technical 
failures might not be immediately apparent, the ever-increasing calls for 
open and transparent scientific reporting could make publishing nega
tive data common practice. As a step in this direction, we encourage 
fellow pharmaceutical 3DP researchers to publish negative data as 
supplementary materials or forward their negative data to us (a.goya 
nes@fabrx.co.uk), so that the models integrated in the web applica
tion may be gradually improved. 

To foster open research within the pharmaceutical 3DP research 
community, we have integrated the optimized ML models from this 
study into an open-source web application that provides prediction on 
filament mechanical characteristics, extrusion and printing tempera
tures, printability, and drug release profiles. Due to the absence of 
dissolution data from in-house formulations, prediction of drug release 
profiles is based on models built from our previous work (Muñiz Castro 
et al., 2021). Free online tools for accelerating formulation de
velopments are also being developed elsewhere by large pharmaceutical 
and excipients companies. For example, BASF's ZoomLab™ uses a pro
prietary algorithm to provide predictions on the most effective formu
lations based on the user's chosen active ingredient and desired product 
profile (BASF, 2022). M3DISEEN represents the first and, at the date of 
writing, only web-based service for predicting FDM 3DP formulation 
performance. These existing online tools demonstrate the critical role 
that Artificial Intelligence will play in accelerating and supporting 
research in the pharmaceutical industry. As 3DP is gradually adopted as 
an alternative to conventional pharmaceutical manufacturing, it is 
hoped that ML will be capable of simulating the entire 3DP workflow 
and provide “backward” predictions akin to BASF's ZoomLab (i.e., 
providing formulation suggestions based on the desired physicochem
ical and dissolution properties). 

4. Conclusion 

In this study, in-house and literature-mined data on HME and FDM 
3DP formulations were successfully used to provide enhanced ML pre
dictive performance compared to those achieve in previous works. The 
dataset comprised 1594 formulations with more heterogenous hot melt 
extrusion outcomes. The optimized ML models were able to predict 
printability and filament characteristics with higher accuracies, and 
HME and FDM printing temperatures within narrower temperature 
ranges than previous iterations. M3DISEEN, the web-based tool for 
guiding HME and FDM 3DP formulation development, was updated with 
the new ML models for predicting filament mechanical characteristics, 
printability, extrusion & printing temperatures, and drug release pro
files. This study demonstrates the importance of having a balanced 
dataset for optimal ML performance. In this vein, accelerating research 
in pharmaceutical FDM 3DP through ML is arguably hampered by the 
lack of negative data. Therefore, we encourage pharmaceutical 3DP 
researchers to publish data on failed prints or forward their negative 
data to us so that M3DISEEN may be gradually improved. With open and 
standardized reporting of data, new and reliable knowledge may be 
generated using ML to advance pharmaceutical 3DP into clinics. 
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