11,613 research outputs found

    Cosmological Density Perturbations with a Scale-Dependent Newton's G

    Full text link
    We explore possible cosmological consequences of a running Newton's constant G(□) G ( \Box ) , as suggested by the non-trivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. In particular we focus here on what possible effects the scale-dependent coupling might have on large scale cosmological density perturbations. Starting from a set of manifestly covariant effective field equations derived earlier, we systematically develop the linear theory of density perturbations for a non-relativistic, pressure-less fluid. The result is a modified equation for the matter density contrast, which can be solved and thus provides an estimate for the growth index parameter γ\gamma in the presence of a running GG. We complete our analysis by comparing the fully relativistic treatment with the corresponding results for the non-relativistic (Newtonian) case, the latter also with a weakly scale dependent GG.Comment: 54 pages, 4 figure

    Cosmic Evolution and Primordial Black Hole Evaporation

    Get PDF
    A cosmological model in which primordial black holes (PBHs) are present in the cosmic fluid at some instant t=t_0 is investigated. The time t_0 is naturally identified with the end of the inflationary period. The PBHs are assumed to be nonrelativistic in the comoving fluid, to have the same mass, and may be subject to evaporation for t>t_0. Our present work is related to an earlier paper of Zimdahl and Pavon [Phys. Rev. D {\bf 58}, 103506 (1998)], but in contradistinction to these authors we assume that the (negative) production rate of the PBHs is zero. This assumption appears to us to be more simple and more physical. Consequences of the formalism are worked out. In particular, the four-divergence of the entropy four-vector in combination with the second law in thermodynamics show in a clear way how the the case of PBH evaporation corresponds to a production of entropy. Accretion of radiation onto the black holes is neglected. We consider both a model where two different sub-fluids interact, and a model involving one single fluid only. In the latter case an effective bulk viscosity naturally appears in the formalism.Comment: 18 pages, LaTeX, no figures. Extended discussion of the black hole evaporation process. Version to appear in Phys. Rev.

    A Magellanic Origin for the Warp of the Galaxy

    Get PDF
    We show that a Magellanic Cloud origin for the warp of the Milky Way can explain most quantitative features of the outer HI layer recently identified by Levine, Blitz & Heiles (2005). We construct a model similar to that of Weinberg (1998) that produces distortions in the dark matter halo, and we calculate the combined effect of these dark-halo distortions and the direct tidal forcing by the Magellanic Clouds on the disk warp in the linear regime. The interaction of the dark matter halo with the disk and resonances between the orbit of the Clouds and the disk account for the large amplitudes observed for the vertical m=0,1,2 harmonics. The observations lead to six constraints on warp forcing mechanisms and our model reasonably approximates all six. The disk is shown to be very dynamic, constantly changing its shape as the Clouds proceed along their orbit. We discuss the challenges to MOND placed by the observations.Comment: 4 pages, 3 figures, submitted to ApJ Letters. Additional graphics, 3d visualizations and movies available at http://www.astro.umass.edu/~weinberg/lm

    A note on the analogy between superfluids and cosmology

    Full text link
    A new analogy between superfluid systems and cosmology is here presented, which relies strongly on the following ingredient: the back-reaction of the vacuum to the quanta of sound waves. We show how the presence of thermal phonons, the excitations above the quantum vacuum for T>0T> 0, enable us to deduce an hydrodynamical equation formally similar to the one obtained for a perfect fluid in a Universe obeying the Friedmann-Robertson-Walker metric.Comment: Accepted for publication in Modern Physics Letters

    Gravity in Brans-Dicke theory with Born-Infeld scalar field and the Pioneer anomaly

    Full text link
    In this paper we discuss a model which can be considered as a generalization of the well-known scalar-tensor Brans-Dicke theory. This model possesses an interesting feature: due to Born-Infeld type non-linearity of the scalar field the properties of the interaction between two test bodies depend significantly on their masses. It is shown that the model can be interesting in view of the Pioneer 10, 11 spacecraft anomaly.Comment: 10 pages, 1 figure, partially changed conten

    Nonlocal Effective Field Equations for Quantum Cosmology

    Full text link
    The possibility that the strength of gravitational interactions might slowly increase with distance, is explored by formulating a set of effective field equations, which incorporate the gravitational, vacuum-polarization induced, running of Newton's constant GG. The resulting long distance (or large time) behaviour depends on only one adjustable parameter ξ\xi, and the implications for the Robertson-Walker universe are calculated, predicting an accelerated power-law expansion at later times t∼ξ∼1/Ht \sim \xi \sim 1/H.Comment: 9 page

    Limits on MeV Dark Matter from the Effective Number of Neutrinos

    Full text link
    Thermal dark matter that couples more strongly to electrons and photons than to neutrinos will heat the electron-photon plasma relative to the neutrino background if it becomes nonrelativistic after the neutrinos decouple from the thermal background. This results in a reduction in N_eff below the standard-model value, a result strongly disfavored by current CMB observations. Taking conservative lower bounds on N_eff and on the decoupling temperature of the neutrinos, we derive a bound on the dark matter particle mass of m_\chi > 3-9 MeV, depending on the spin and statistics of the particle. For p-wave annihilation, our limit on the dark matter particle mass is stronger than the limit derived from distortions to the CMB fluctuation spectrum produced by annihilations near the epoch of recombination.Comment: 5 pages, 1 figure, discussion added, references added and updated, labels added to figure, to appear in Phys. Rev.

    A Classical Instability of Reissner-Nordstrom Solutions and the Fate of Magnetically Charged Black Holes

    Get PDF
    Working in the context of spontaneously broken gauge theories, we show that the magnetically charged Reissner-Nordstrom solution develops a classical instability if the horizon is sufficiently small. This instability has significant implications for the evolution of a magnetically charged black hole. In particular, it leads to the possibility that such a hole could evaporate completely, leaving in its place a nonsingular magnetic monopole.Comment: (10 pages

    Reciprocal relativity of noninertial frames: quantum mechanics

    Full text link
    Noninertial transformations on time-position-momentum-energy space {t,q,p,e} with invariant Born-Green metric ds^2=-dt^2+dq^2/c^2+(1/b^2)(dp^2-de^2/c^2) and the symplectic metric -de/\dt+dp/\dq are studied. This U(1,3) group of transformations contains the Lorentz group as the inertial special case. In the limit of small forces and velocities, it reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds^2=dt^2. The U(1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary reprentations of its central extension. The same method of projective representations of the inhomogeneous U(1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous U(1,3) group is the cover of the quaplectic group Q(1,3)=U(1,3)*s H(4). H(4) is the Weyl-Heisenberg group. A set of second order wave equations results from the representations of the Casimir operators
    • …
    corecore