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The Reissner-Nordstrom solution to the coupled Einstein-Maxwell equations describes

a spherically symmetric black hole endowed with electric or magnetic charge. Although

the solution makes mathematical sense in a theory involving only gravity and the electro-

magnetic field, its physical motivation is somewhat tenuous unless the theory also contains

particles carrying such charges. This remark has little consequence in the case of electric

charge, since one only need add a field whose elementary particles are electrically charged.

The addition of magnetic charge to the theory is less trivial, but can be accomplished by

enlarging the structure of the theory so that electromagnetism emerges as the unbroken

subgroup of a spontaneously broken gauge theory in which magnetic monopoles arise as

topologically nontrivial classical solution [1]. The incorporation of these additional fields

into the Reissner-Nordstrom solution is rather straightforward [2], and changes neither the

metric nor the magnetic field. However, as we will show in this letter, the presence of these

fields can render this solution unstable. This instability arises at the level of the classical

field equations and does not depend on any quantum mechanical process. It has important

implications for the ultimate fate of magnetically charged black holes.

The magnetically charged Reissner-Nordstrom solution to the Maxwell- Einstein equa-

tions has a radial magnetic field with magnitude QM/T2 and a metric which may be written

as

da2 = Bdt2 - Adr2 - r2d62 - r2 sin.29d<t>2 (I)

where
. 2MG 47TGQ2, _

B = A =1 --- 1 -- - — = BRN (2)

There is a physical singularity at r = 0 which is hidden within a horizon at

TH = MG + M2G* -4irGQ2
M (3)

provided that the mass M is greater than

(4)

where the Planck mass Mp = G~1/2 . If \QM\ ^ 1 (as will be the case for the weak gauge

coupling we will assume) the horizon of the critical Reissner-Nordstrom black hole is at

TH ^> Mp1, and is thus in a region where quantum gravity effects can be neglected.



This solution is readily incorporated into a theory possessing classical magnetic mono-

pole solutions. For definiteness we consider an SU(2) gauge theory which is spontaneously

broken to U(l) by the vacuum expectation value of a triplet Higgs field <&. The action is

= j <£4X^ I - J^ + ^Matter

where

+ D»* • D»* - V(|*|) (6)

FMl/ = d^Av - dvA.p - eAM x A,, (7)

x * (8)

and vector notation refers to the internal SU(2) indices. The potential V(|«l»|) is assumed

to have a minimum at |$| = v; to avoid a cosmologies! constant, V must vanish at this

minimum. This theory contains nonsingular monopoles with magnetic charge QM = 1/e

and mass Mmon ~ 4irv/e, provided that v ^ Mp. (For v larger than this, the would-be

monopoles are so massive that they become black holes themselves [3,4].)

The metric for the Reissner-Nordstrom solutions of this theory is precisely the same

as that given above for the Maxwell" theory. For vanishing electric charge and magnetic

charge QM — n/e, the matter fields are, up to a possible gauge transformation,

* = ve(6,tf (9)

A,, = -e x dMe (10)

where e is a unit vector with winding number ra; a convenient choice, which we adopt

henceforth, is e = (sind cosn^, sindsinn^, cos 5). These imply that

F*0 = -F00 = - sin 8 e (11)

This lies entirely within the electromagnetic U(l) subgroup defined by the Higgs field and

precisely reproduces the radial magnetic field of the Maxwell-Einstein theory. All other

components of the field strength, as well as all of the covariant derivatives of «I», vanish.



1
We now investigate the stability of these solutions, beginning with the case of per-

turbations about the solution with unit magnetic charge. The problem can be simplified

by considering only spherically symmetric configurations; this turns out to be sufficient to

demonstrate instability. For such configurations, the metric can be written in the form of

Eq.(l), with B and A being functions only of r and t. By an appropriate gauge choice the

matter fields can be brought to the form

*=ve(0,^)fc(r ,0 (12)

Ai = -e x 8ie(l-it(r,t)) (13)

where AQ = 0 because we are interested in electrically neutral solutions. (With our choice

for e, this reduces to the standard ansatz in flat space.) Substitution of this into the matter

Lagrangian gives

1 ,:,! 1.2i.2 (u2 - I)2 u2h2v2

A ^ • O- " 0.2.4 -2 ~V(V (14)

with overdots and primes referring to derivatives with respect to t and r, respectively. This

leads to the equations

1 d JVABh\ 1 d ir2VABh'\ = 2hu2 I dV
SAB dt \ B ) r2^/AB^T \ A J ~ r 2 v2 dh ( '

and
/ /~TF;-\ n / /-r?; A •>1 o I yABu \ I d I yABu' \ u(u£ — 1) 2 .2 2 .

. —- — -==— j = — - e*uh?v2 (16)
VABdt \ B J </ABdr \ A J r2

for the matter fields, as well as equations, whose explicit form we do not need, for the metric

coefficients A and B. To consider fluctuations about the Reissner-Nordstrom solution we

only need keep terms linear in u, h — 1, SB = B — BRN, and SA = A — B~^N. Remarkably,

the coupled equations separate. The equations for the metric components contain neither u

nor h — 1, and thus cannot lead to unstable modes (otherwise there would be an instability

in the pure Maxwell-Einstein case). The perturbation of the scalar field enters only in

the linearization of Eq. (15), and can be shown not to lead to instability. The remaining



fluctuation, u, is determined by the linearized version of Eq. (16). If we define a variable

x by
*

so that x ranges from — oo to oo as one goes from the horizon to spatial infinity, then the

equation for u may be written as

•2

0 = «-— ^ + U(z)u (18)
az*

where
(e

2t;2r2 _ I")
Z7(x) = ffc*(r)i - ^— ̂  (19)

and r is understood to be a function of x determined by Eq. (17). Instability occurs if

there are solutions of the form u(r,t) = f(r)eut with real u;. Substitution of this gives

a one-dimensional Schroedinger equation for a particle moving under the influence of the

potential U(x). The unstable mode exists if this potential has a bound state. Since U(x)

goes to the positive value e2v2 at x = oo, although it goes to zero at x = — oo, it is

not entirely trivial to see for what range of parameters we have a bound state. One can

show that a bound state exists if TH < c(ev)~1 where c is somewhat less than one, or,

equivalently for

' (20)v 'ce

As M ~ > Mcrit, c approaches unity. For M ^> Mcrjt, we can bound c by a variational

calculation. Using the variational ansatz u = yV — r^exp(— A(r— r/f)/2), we find c > 0.32.

The physical basis for this instability is easily understood. The classical monopole

solution has a core of radius ~ (ev)"1, inside of which the Higgs field deviates from its

vacuum value and the massive components of the gauge field are nonzero. The effect of

this core is to remove the singularity in the energy density which would arise from a point

magnetic charge. Its radius is determined by the balancing of the energy needed to produce

the nontrivial matter fields against the energy cost of extending the Coulomb magnetic

field further inward.

Similar considerations can be applied to solutions with horizons. Here, however, we

should only consider the region outside* the horizon since singularities axe allowed, and



\
even expected, inside the horizon. Looking at the case of a Reissner-Nordstrom solution

with Tjj £> (ev)~ l, we see that the Coulomb field has, in a sense, been extended inward too

far. Energetically, it would be preferable to have a core region extending outward beyond

the horizon [5]. In fact solutions of this sort, which may be viewed as small black holes

lying within larger magnetic monopoles, can be shown to exist if v is less than a critical

value vcr ~ Mp and if the mass M is not too great [4]. When they exist, the horizon

radius TH of these solutions is larger than that of the Reissner-Nordstrom solution with

the same value of M. Thus, these solutions appear to be the natural endpoints to which

the instability of the Reissner-Nordstrom solution leads.

We now turn to the case of multiple magnetic charge. The analysis is complicated by

the fact that in the SU(2) theory the only configurations with higher topological charge

which are spherically symmetric (i.e., invariant up to a gauge transformation under spatial

rotations) are the singular solutions given by Eqs. (9) and (10) [6]. There is thus no

spherically symmetric case to which we can restrict our consideration; instead, we must

consider the full perturbation problem. This can be done by expanding the action in

powers of the fluctuations about the Reissner-Nordstrom solution and examining the terms

quadratic in these fluctuations. (The linear terms vanish because we are expanding about

a solution.) It is convenient to use the gauge freedom to require that the orientation of

the scalar field remain the same as in the unperturbed solution, so that 6$ x e = 0. It

is also useful to decompose the fluctuation in the gauge field into parts orthogonal to and

parallel to e; thus, we write 6AM = a^ + c^e with e • aM = 0. The fact that D^e = 0

(here, and for the remainder of this discussion, D^ is the covariant derivative defined by

the unperturbed vector potential) leads to the useful result that e • D^av = 0.

Several factors simplify the process of extracting the quadratic terms in the action.

Because JDp3>, Fr/i and F*M all vanish for the unperturbed solution, terms containing

the product of a metric perturbation and a matter perturbation can only arise from the

Fg<j,' Fe* term in C Matter', it is easy to see that the only matter field that can enter here is

Op. Further, the cross terms between aM and <:„, between aM and 6h, and between CM and

6h all vanish. The result is that the quadratic part of the action may be decomposed as

MI/) = 5i(cM,£0MI/) -f S2(6&) + 53(aM) (21)



Since CM is the component of the fluctuation lying in the unbroken U(l) subgroup, 5j

describes an essentially Abelian problem; we therefore do not expect it to contain any

unstable modes. Similarly, 82 is simply the action for a neutral scalar field in a curved

Reissner-Nordstrom background, and easily shown to give no instabilities.

This leaves us with

= / d*
J

Tr2 «sin 0 — -( n a — D a ^ • f D^n* — D^a^M*r S1I1(7 I.L/«d|/ ±Jvoit^\ • I-*-' <* *> ** I

(22)
~eVaM .a" + eF^.a* x

where indices are understood to be raised by unperturbed metric and F$0 is the unper-

turbed magnetic field. Note first that stability would be manifest if it were not for the

presence of the last term in the integrand. Indeed, the instability of the n = 1 solution

sets in as soon as this driving term can be greater in magnitude than the mass terms for

a* and a<£ just outside the horizon. With the aid of the inequality

(23)

it is easily shown that the driving term cannot be dominant, and thus stability is assured, if

TH > Vn/(eu). Conversely, exponentially growing solutions can be constructed whenever

TJJ < cv/n/(et;). An explicit example, which can be verified by substitution into the field

equations derived from 5*3 , is given by at = ar = 0 and

a0 = un(r, t) sin71"1 9 dge x e
(24)

a^ = un(r,t)sinn8d0e

where un(r, t) satisfies Eq. (18), but with e2v2 replaced by ne2v2 in the potential U(x).

As expected, this solution is not spherically symmetric; under rotation, it transforms into

other linearly independent solutions. Using Eq. (3), we can see that this instability is

present whenever n ^ (Mp/v)2 and

.. ... ,M < Min,t = — - ^ + - (25)
2ev ce

Some physical understanding of the n-dependence of this result can be obtained by

returning to the flat space picture of a core region of radius R containing nontrivial Higgs
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and charged boson fields, with only a Coulomb magnetic field extending beyond the core. A

variations! argument shows that the value of R which minimizes the energy is proportional

to ^/n.

This instability has significant implications for the evolution of a magnetically charged

black hole. A Reissner-Nordstrom black hole will lose mass through the emission of Hawk-

ing radiation [7]. In the absence of the classical instability, this process would eventually

turn off as M approached Mcrn, where the Hawking temperature

TH . (26)
** (M +

vanishes, unless it had lost its magnetic charge in the meantime. Such a discharge could be

accomplished by the production of monopole-antimonopole pairs in the strong magnetic

field outside the horizon, with one particle falling into the hole and the other moving out

to spatial infinity [8]. Pair production of monopoles with magnetic charge 1/e becomes

significant only in magnetic fields of magnitude eM^non [9]. The field at the horizon of

a hole with charge n/e is this large only if M ^ Mpair ~ -^nMp/v [10]. Since this is a

factor of e smaller than Min,t, pair production is significant only for black holes which are

already classically unstable [11].

The classical instability changes this scenario. Consider first the case of a hole with

unit magnetic charge. Thus, suppose that a single magnetic monopole falls into a large

neutral black hole, which eventually settles down to a Reissner-Nordstrom solution. The

hole begins to lose mass through the Hawking process. As the mass falls below M{ntt

and the horizon contracts within the sphere r = c(et;)~1, the instability causes nontrivial

matter fields to begin to outside the horizon. The black hole is now described by a solution

of the type found in Ref. 4. Its horizon continues to contract, revealing more and more of

a monopole core. Its temperature, like that of a Schwarzschild black hole, increases mono-

tonically. While the question of its ultimate fate cannot be settled within the semiclassical

approximation, the answer will be the same as for a Schwarzschild black hole. If the latter

can in fact evaporate completely, then so can our black hole. When it does so, it leaves

behind a monopole identical to the one which had fallen in long before.



This picture is modified slightly if n > 1. Because the unstable modes are not spher-

ically symmetric, the matter fields which emerge when M falls below Minat do not form a

uniform shell, but are instead localized about isolated points on the horizon. A plausible

guess is that as the horizon contracts these grow into lumps which can eventually break

off as unit monopoles, thus reducing the magnetic charge of the hole. Eventually only a

single charge is left, and the evolution proceeds as described above.

Furthermore, if M > Mcr,-t and n > (Mp/v)2, stability is assured since TH > ^/n/ev.

Thus, a black hole could be stabilized by endowing it with a sufficiently large magnetic

charge. However, this stabilization is not absolute. Pair production, although strongly

suppressed, is not quite forbidden. Eventually, enough of the magnetic charge will have

been emitted for the monopole instability to emerge.

While these results have been obtained in the context of an SU(2) gauge theory, they

clearly can be extended to other gauge theories containing magnetic monopoles. In some

theories with two stages of symmetry breaking it is possible to have more than one variety

of monopole; e.g. a heavy singly- charged monopole and a somewhat lighter (and spatially

larger) doubly-charged one [12]. In such theories the Reissner-Nordstrom solutions of

higher charge presumably become unstable when their horizon is comparable to the the

size of the lighter monopole, with the singly charged solution remaining stable until it has

.shrunk to the size of the heavier one.

One can also obtain magnetic monopole solutions in Kaluza-Klein models [13]. The

question of whether these lead to similar instabilities is an interesting one, but is beyond

the scope of this letter.

Thus, the effect we have found leads to a remarkable new possibility for the evaporation

of a black hole carrying a conserved magnetic charge. Previously, it had seemed that

if such a hole did not somehow lose its charge the Hawking process would terminate

before complete evaporation was achieved. We see now that charge conservation need not

be a barrier to complete evaporation, and that it is quite possible that a magnetically

charged black hole could evaporate completely, leaving in its place a nonsingular magnetic

monopole.

We thank Hai Ren for pointing out an error in a previous version of this paper.
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