3,265 research outputs found

    Coefficients and terms of the liquid drop model and mass formula

    Get PDF
    The coefficients of different combinations of terms of the liquid drop model have been determined by a least square fitting procedure to the experimental atomic masses. The nuclear masses can also be reproduced using a Coulomb radius taking into account the increase of the ratio R_0/A1/3R\_0/A^{1/3} with increasing mass, the fitted surface energy coefficient remaining around 18 MeV

    Test results of Spacelab 2 infrared telescope focal plane

    Get PDF
    The small helium cooled infrared telescope for Spacelab 2 is designed for sensitive mapping of extended, low-surface-brightness celestial sources as well as highly sensitive investigations of the shuttle contamination environment (FPA) for this mission is described as well as the design for a thermally isolated, self-heated J-FET transimpedance amplifier. This amplifier is Johnson noise limited for feedback resistances from less than 10 to the 8th power Omega to greater than 2 x 10 to the 10th power Omega at T = 4.2K. Work on the focal plane array is complete. Performance testing for qualification of the flight hardware is discussed, and results are presented. All infrared data channels are measured to be background limited by the expected level of zodiacal emission

    Dynamical Mean Field Theory of the Antiferromagnetic Metal to Antiferromagnetic Insulator Transition

    Full text link
    We study the antiferromagnetic metal to antiferromagnetic insulator using dynamical mean field theory and exact diagonalization methods. We find two qualitatively different behaviors depending on the degree of magnetic correlations. For strong correlations combined with magnetic frustration, the transition can be described in terms of a renormalized slater theory, with a continuous gap closure driven by the magnetism but strongly renormalized by correlations. For weak magnetic correlations, the transition is weakly first order.Comment: 4 pages, uses epsfig,4 figures,notational errors rectifie

    Caltech Faint Field Galaxy Redshift Survey IX: Source detection and photometry in the Hubble Deep Field Region

    Get PDF
    Detection and photometry of sources in the U_n, G, R, and K_s bands in a 9x9 arcmin^2 region of the sky, centered on the Hubble Deep Field, are described. The data permit construction of complete photometric catalogs to roughly U_n=25, G=26, R=25.5 and K_s=20 mag, and significant photometric measurements somewhat fainter. The galaxy number density is 1.3x10^5 deg^{-2} to R=25.0 mag. Galaxy number counts have slopes dlog N/dm=0.42, 0.33, 0.27 and 0.31 in the U_n, G, R and K_s bands, consistent with previous studies and the trend that fainter galaxies are, on average, bluer. Galaxy catalogs selected in the R and K_s bands are presented, containing 3607 and 488 sources, in field areas of 74.8 and 59.4 arcmin^2, to R=25.5 and and K_s=20 mag.Comment: Accepted for publication in ApJS; some tables and slightly nicer figures available at http://www.sns.ias.edu/~hogg/deep

    AVHRR and VISSR satellite instrument calibration results for both Cirrus and marine stratocumulus IFO periods

    Get PDF
    Accurate characterizations of some cloud parameters are dependent upon the absolute accuracy of satellite radiance measurements. Visible wavelength measurements from both the AVHRR and VISSR instruments are often used to study cloud characteristics. Both of these instruments were radiometrically calibrated prior to launch, but neither has an onboard device to monitor degradation after launch. During the FIRE/SRB cirrus Intensive Field Operation (IFO), a special effort was made to monitor calibration of these two instruments onboard the NOAA-9 and GOES-6 spacecraft. In addition, several research groups have combined their efforts to assess the long-term performance of both instruments. These results are presented, and a limited comparison is made with the ERBE calibration standard

    IRS Spectra of Solar-Type Stars: \break A Search for Asteroid Belt Analogs

    Full text link
    We report the results of a spectroscopic search for debris disks surrounding 41 nearby solar type stars, including 8 planet-bearing stars, using the {\it Spitzer Space Telescope}. With accurate relative photometry using the Infrared Spectrometer (IRS) between 7-34 \micron we are able to look for excesses as small as \sim2% of photospheric levels with particular sensitivity to weak spectral features. For stars with no excess, the 3σ3\sigma upper limit in a band at 30-34 μ\mum corresponds to \sim 75 times the brightness of our zodiacal dust cloud. Comparable limits at 8.5-13 μ\mum correspond to \sim 1,400 times the brightness of our zodiacal dust cloud. These limits correspond to material located within the <<1 to \sim5 AU region that, in our solar system, originates from debris associated with the asteroid belt. We find excess emission longward of \sim25 μ\mum from five stars of which four also show excess emission at 70 μ\mum. This emitting dust must be located around 5-10 AU. One star has 70 micron emission but no IRS excess. In this case, the emitting region must begin outside 10 AU; this star has a known radial velocity planet. Only two stars of the five show emission shortward of 25 \micron where spectral features reveal the presence of a population of small, hot dust grains emitting in the 7-20 μ\mum band. The data presented here strengthen the results of previous studies to show that excesses at 25 \micron and shorter are rare: only 1 star out of 40 stars older than 1 Gyr or 2.5\sim 2.5% shows an excess. Asteroid belts 10-30 times more massive than our own appear are rare among mature, solar-type stars

    New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets

    Get PDF
    Using the MIPS instrument on the Spitzer telescope, we have searched for infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence field stars, along with a small number of nearby M stars. These stars were selected for their suitability for future observations by a variety of planet-finding techniques. These observations provide information on the asteroidal and cometary material orbiting these stars - data that can be correlated with any planets that may eventually be found. We have found significant excess 70um emission toward 12 stars. Combined with an earlier study, we find an overall 70um excess detection rate of 13±313 \pm 3% for mature cool stars. Unlike the trend for planets to be found preferentially toward stars with high metallicity, the incidence of debris disks is uncorrelated with metallicity. By newly identifying 4 of these stars as having weak 24um excesses (fluxes \sim10% above the stellar photosphere), we confirm a trend found in earlier studies wherein a weak 24um excess is associated with a strong 70um excess. Interestingly, we find no evidence for debris disks around 23 stars cooler than K1, a result that is bolstered by a lack of excess around any of the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the fact that strong zodiacal emission can make it hard or impossible to detect planets directly with future observatories like the {\it Terrestrial Planet Finder (TPF)}. The observations reported here exclude a few stars with very high levels of emission, >>1,000 times the emission of our zodiacal cloud, from direct planet searches. For the remainder of the sample, we set relatively high limits on dust emission from asteroid belt counterparts

    The Spitzer Space Telescope Mission

    Full text link
    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first six months of the Spitzer mission.Comment: Accepted for publication in the Astrophyscial Journal Supplement Spitzer Special Issue, 22 pages, 3 figures. Higher resolution versions of the figures are available at http://ssc.spitzer.caltech.edu/pubs/journal2004.htm
    corecore