41,108 research outputs found

    SOS-convex Semi-algebraic Programs and its Applications to Robust Optimization: A Tractable Class of Nonsmooth Convex Optimization

    Get PDF
    In this paper, we introduce a new class of nonsmooth convex functions called SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex polynomials. This class of nonsmooth convex functions covers many common nonsmooth functions arising in the applications such as the Euclidean norm, the maximum eigenvalue function and the least squares functions with â„“1\ell_1-regularization or elastic net regularization used in statistics and compressed sensing. We show that, under commonly used strict feasibility conditions, the optimal value and an optimal solution of SOS-convex semi-algebraic programs can be found by solving a single semi-definite programming problem (SDP). We achieve the results by using tools from semi-algebraic geometry, convex-concave minimax theorem and a recently established Jensen inequality type result for SOS-convex polynomials. As an application, we outline how the derived results can be applied to show that robust SOS-convex optimization problems under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty and answers the open questions left in [Optimization Letters 9, 1-18(2015)] on how to recover a robust solution from the semi-definite programming relaxation in this broader setting

    Unambiguous Acquisition and Tracking Technique for General BOC Signals

    Get PDF
    This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits

    Density-functional investigation of the rhombohedral to simple cubic phase transition of arsenic

    Full text link
    We report on our investigation of the crystal structure of arsenic under compression, focusing primarily on the pressure-induced A7 to simple cubic (sc) phase transition. The two-atom rhombohedral unit cell is subjected to pressures ranging from 0 GPa to 200 GPa; for each given pressure, cell lengths and angles, as well as atomic positions, are allowed to vary until the fully relaxed structure is obtained. We find that the nearest and next-nearest neighbor distances give the clearest indication of the occurrence of a structural phase transition. Calculations are performed using the local density approximation (LDA) and the PBE and PW91 generalized gradient approximations (GGA-PBE and GGA-PW91) for the exchange-correlation functional. The A7 to sc transition is found to occur at 21+/-1 GPa in the LDA, at 28+/-1 GPa in the GGA-PBE and at 29+/-1 GPa in the GGA-PW91; no volume discontinuity is observed across the transition in any of the three cases. We use k-point grids as dense as 66X66X66 to enable us to present reliably converged results for the A7 to sc transition of arsenic.Comment: To be published in Physical Review B; material supplementary to this article is available at arXiv:0810.169
    • …
    corecore