158 research outputs found

    Introduction of a breast cancer care programme including ultra short hospital stay in 4 early adopter centres: framework for an implementation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whereas ultra-short stay (day care or 24 hour hospitalisation) following breast cancer surgery was introduced in the US and Canada in the 1990s, it is not yet common practice in Europe. This paper describes the design of the MaDO study, which involves the implementation of ultra short stay admission for patients after breast cancer surgery, and evaluates whether the targets of the implementation strategy are reached. The ultra short stay programme and the applied implementation strategy will be evaluated from the economic perspective.</p> <p>Methods/design</p> <p>The MaDO study is a pre-post-controlled multi-centre study, that is performed in four hospitals in the Netherlands. It includes a pre and post measuring period of six months each with six months of implementation in between in at least 40 patients per hospital per measurement period.</p> <p>Primary outcome measure is the percentage of patients treated in ultra short stay. Secondary endpoints are the percentage of patients treated according to protocol, degree of involvement of home care nursing, quality of care from the patient's perspective, cost-effectiveness of the ultra short stay programme and cost-effectiveness of the implementation strategy. Quality of care will be measured by the QUOTE-breast cancer instrument, cost-effectiveness of the ultra short stay programme will be measured by means of the EuroQol (administered at four time-points) and a cost book for patients. Cost-effectiveness analysis will be performed from a societal perspective. Cost-effectiveness of the implementation strategy will be measured by determination of the costs of implementation activities.</p> <p>Discussion</p> <p>This study will reveal barriers and facilitators for implementation of the ultra short stay programme. Moreover, the results of the study will provide information about the cost-effectiveness of the ultra short stay programme and the implementation strategy.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN77253391.</p

    Hydroxybenzothiazoles as New Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1)

    Get PDF
    17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics

    Insights in 17β-HSD1 Enzyme Kinetics and Ligand Binding by Dynamic Motion Investigation

    Get PDF
    BACKGROUND: Bisubstrate enzymes, such as 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), exist in solution as an ensemble of conformations. 17beta-HSD1 catalyzes the last step of the biosynthesis of estradiol and, thus, it is a potentially attractive target for breast cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the conformational transitions of its catalytic cycle, a structural analysis of all available crystal structures was performed and representative conformations were assigned to each step of the putative kinetic mechanism. To cover most of the conformational space, all-atom molecular dynamic simulations were performed using the four crystallographic structures best describing apoform, opened, occluded and closed state of 17beta-HSD1 as starting structures. With three of them, binary and ternary complexes were built with NADPH and NADPH-estrone, respectively, while two were investigated as apoform. Free energy calculations were performed in order to judge more accurately which of the MD complexes describes a specific kinetic step. CONCLUSIONS/SIGNIFICANCE: Remarkably, the analysis of the eight long range trajectories resulting from this multi-trajectory/-complex approach revealed an essential role played by the backbone and side chain motions, especially of the betaF alphaG'-loop, in cofactor and substrate binding. Thus, a selected-fit mechanism is suggested for 17beta-HSD1, where ligand-binding induced concerted motions of the FG-segment and the C-terminal part guide the enzyme along its preferred catalytic pathway. Overall, we could assign different enzyme conformations to the five steps of the random bi-bi kinetic cycle of 17beta-HSD1 and we could postulate a preferred pathway for it. This study lays the basis for more-targeted biochemical studies on 17beta-HSD1, as well as for the design of specific inhibitors of this enzyme. Moreover, it provides a useful guideline for other enzymes, also characterized by a rigid core and a flexible region directing their catalysis

    Species Used for Drug Testing Reveal Different Inhibition Susceptibility for 17beta-Hydroxysteroid Dehydrogenase Type 1

    Get PDF
    Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD 1) for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17β-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17β-HSD types 1, 2, 4, 5 and 7 but also against 17β-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17β-HSDs analyzed were observed. Especially, the rodent 17β-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17β-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution

    Populations of Radial Glial Cells Respond Differently to Reelin and Neuregulin1 in a Ferret Model of Cortical Dysplasia

    Get PDF
    Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not

    Effects of Neonatal Neural Progenitor Cell Implantation on Adult Neuroanatomy and Cognition in the Ts65Dn Model of Down Syndrome

    Get PDF
    As much of the aberrant neural development in Down syndrome (DS) occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC) in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line) or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2) Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model

    Microsecond Isomer at the N=20 Island of Shape Inversion Observed at FRIB

    Full text link
    Excited-state spectroscopy from the first Facility for Rare Isotope Beams (FRIB) experiment is reported. A 24(2)-μ\mus isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ\gamma rays in coincidence with 32Na^{32}\textrm{Na} nuclei. This is the only known microsecond isomer (1 μsT1/2<1 ms1{\text{ }\mu\text{s}}\leq T_{1/2} < 1\text{ ms}) in the region. This nucleus is at the heart of the N=20N=20 island of shape inversion and is at the crossroads of spherical shell-model, deformed shell-model, and ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to 32Mg^{32}\textrm{Mg}, 32Mg+π1+ν+1^{32}\textrm{Mg}+\pi^{-1} + \nu^{+1}. This odd-odd coupling and isomer formation provides a sensitive measure of the underlying shape degrees of freedom of 32Mg^{32}\textrm{Mg}, where the onset of spherical-to-deformed shape inversion begins with a low-lying deformed 2+2^+ state at 885 keV and a low-lying shape-coexisting 02+0_2^+ state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in 32^{32}Na: a 66^- spherical shape isomer that decays by E2E2 or a 0+0^+ deformed spin isomer that decays by M2M2. The present results and calculations are most consistent with the latter, indicating that the low-lying states are dominated by deformation.Comment: 7 pages, 5 figures, accepted by Physical Review Letter
    corecore