14,891 research outputs found
Melt viscosities of lattice polymers using a Kramers potential treatment
Kramers relaxation times and relaxation times and
for the end-to-end distances and for center of mass diffusion are
calculated for dense systems of athermal lattice chains. is defined
from the response of the radius of gyration to a Kramers potential which
approximately describes the effect of a stationary shear flow. It is shown that
within an intermediate range of chain lengths N the relaxation times
and exhibit the same scaling with N, suggesting that N-dependent
melt-viscosities for non-entangled chains can be obtained from the Kramers
equilibrium concept.Comment: submitted to: Journal of Chemical Physic
Generation of non-Gaussian statistics and coherent structures in ideal magnetohydrodynamics
Spectral method simulations of ideal magnetohydrodynamics are used to investigate production of coherent small scale structures, a feature of fluid models that is usually associated with inertial range signatures of nonuniform dissipation, and the associated emergence of non-Gaussian statistics. The near-identical growth of non-Gaussianity in ideal and nonideal cases suggests that generation of coherent structures and breaking of self-similarity are essentially ideal processes. This has important implications for understanding the origin of intermittency in turbulence
Vortex density fluctuations in quantum turbulence
We compute the frequency spectrum of turbulent superfluid vortex density
fluctuations and obtain the same Kolmogorov scaling which has been observed in
a recent experiment in Helium-4. We show that the scaling can be interpreted in
terms of the spectrum of reconnecting material lines. The calculation is
performed using a vortex tree algorithm which considerably speeds up the
evaluation of Biot-Savart integrals.Comment: 7 Pages, 7 figure
Unusual conductance of polyyne-based molecular wires
We report a full self-consistent ab initio calculation of the current-voltage
curve and the conductance of thiolate capped polyynes in contact with gold
electrodes. We find the conductance of polyynes an order of magnitude larger
compared with other conjugated oligomers. The reason lies in the position of
the Fermi level deep in the HOMO related resonance. With the conductance weakly
dependent on the applied bias and almost independent of the length of the
molecular chain, polyynes appear as nearly perfect molecular wires.Comment: 4 pages, 5 figures, 3 table
Kinetic step bunching during surface growth
We study the step bunching kinetic instability in a growing crystal surface
characterized by anisotropic diffusion. The instability is due to the interplay
between the elastic interactions and the alternation of step parameters. This
instability is predicted to occur on a vicinal semiconductor surface Si(001) or
Ge(001) during epitaxial growth. The maximal growth rate of the step bunching
increases like , where is the deposition flux. Our results are
complemented with numerical simulations which reveals a coarsening behavior on
the long time for the nonlinear step dynamics.Comment: 4 pages, 6 figures, submitted to PR
Effect of step stiffness and diffusion anisotropy on the meandering of a growing vicinal surface
We study the step meandering instability on a surface characterized by the
alternation of terraces with different properties, as in the case of Si(001).
The interplay between diffusion anisotropy and step stiffness induces a finite
wavelength instability corresponding to a meandering mode. The instability sets
in beyond a threshold value which depends on the relative magnitudes of the
destabilizing flux and the stabilizing stiffness difference. The meander
dynamics is governed by the conserved Kuramoto-Sivashinsky equation, which
display spatiotemporal coarsening.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. (February 2006
Thermodynamic ground states of platinum metal nitrides
The thermodynamic stabilities of various phases of the nitrides of the
platinum metal elements are systematically studied using density functional
theory. It is shown that for the nitrides of Rh, Pd, Ir and Pt two new crystal
structures, in which the metal ions occupy simple tetragonal lattice sites,
have lower formation enthalpies at ambient conditions than any previously
proposed structures. The region of stability with respect to those structures
extends to 17 GPa for PtN2. Calculations show that the PtN2 simple tetragonal
structures at this pressure are thermodynamically stable also with respect to
phase separation. The fact that the local density and generalized gradient
approximations predict different values of the absolute formation enthalpies as
well different relative stabilities between simple tetragonal and the pyrite or
marcasite structures are further discussed.Comment: 5 pages, 4 figure
Turbulent thermalization of weakly coupled non-abelian plasmas
We study the dynamics of weakly coupled non-abelian plasmas within the
frameworks of classical-statistical lattice gauge-theory and kinetic theory. We
focus on a class of systems which are highly occupied, isotropic at all times
and initially characterized by a single momentum scale. These represent an
idealized version of the situation in relativistic heavy ion-collisions in the
color-glass condensate picture, where on a time scale after the
collision of heavy nuclei a longitudinally expanding plasma characterized by
the saturation scale is formed. Our results indicate that the system
evolves according to a turbulent Kolmogorov cascade in the classical regime.
Taking this into account, the kinetic description is able to reproduce
characteristic features of the evolution correctly.Comment: 8 pages, 6 figure
Electromagnetic Momentum in Dispersive Dielectric Media
When the effects of dispersion are included, neither the Abraham nor the
Minkowski expression for electromagnetic momentum in a dielectric medium gives
the correct recoil momentum for absorbers or emitters of radiation. The total
momentum density associated with a field in a dielectric medium has three
contributions: (i) the Abraham momentum density of the field, (ii) the momentum
density associated with the Abraham force, and (iii) a momentum density arising
from the dispersive part of the response of the medium to the field, the latter
having a form evidently first derived by D.F. Nelson [Phys. Rev. A 44, 3985
(1991)]. All three contributions are required for momentum conservation in the
recoil of an absorber or emitter in a dielectric medium. We consider the
momentum exchanged and the force on a polarizable particle (e.g., an atom or a
small dielectric sphere) in a host dielectric when a pulse of light is incident
upon it, including the dispersion of the dielectric medium as well as a
dispersive component in the response of the particle to the field. The force
can be greatly increased in slow-light dielectric media.Comment: 9 pages. To be published by Optics Communication
- …