14,891 research outputs found

    Melt viscosities of lattice polymers using a Kramers potential treatment

    Full text link
    Kramers relaxation times τK\tau_{K} and relaxation times τR\tau_{R} and τG\tau_{G} for the end-to-end distances and for center of mass diffusion are calculated for dense systems of athermal lattice chains. τK\tau_{K} is defined from the response of the radius of gyration to a Kramers potential which approximately describes the effect of a stationary shear flow. It is shown that within an intermediate range of chain lengths N the relaxation times τR\tau_{R} and τK\tau_{K} exhibit the same scaling with N, suggesting that N-dependent melt-viscosities for non-entangled chains can be obtained from the Kramers equilibrium concept.Comment: submitted to: Journal of Chemical Physic

    Generation of non-Gaussian statistics and coherent structures in ideal magnetohydrodynamics

    Get PDF
    Spectral method simulations of ideal magnetohydrodynamics are used to investigate production of coherent small scale structures, a feature of fluid models that is usually associated with inertial range signatures of nonuniform dissipation, and the associated emergence of non-Gaussian statistics. The near-identical growth of non-Gaussianity in ideal and nonideal cases suggests that generation of coherent structures and breaking of self-similarity are essentially ideal processes. This has important implications for understanding the origin of intermittency in turbulence

    Vortex density fluctuations in quantum turbulence

    Full text link
    We compute the frequency spectrum of turbulent superfluid vortex density fluctuations and obtain the same Kolmogorov scaling which has been observed in a recent experiment in Helium-4. We show that the scaling can be interpreted in terms of the spectrum of reconnecting material lines. The calculation is performed using a vortex tree algorithm which considerably speeds up the evaluation of Biot-Savart integrals.Comment: 7 Pages, 7 figure

    Unusual conductance of polyyne-based molecular wires

    Full text link
    We report a full self-consistent ab initio calculation of the current-voltage curve and the conductance of thiolate capped polyynes in contact with gold electrodes. We find the conductance of polyynes an order of magnitude larger compared with other conjugated oligomers. The reason lies in the position of the Fermi level deep in the HOMO related resonance. With the conductance weakly dependent on the applied bias and almost independent of the length of the molecular chain, polyynes appear as nearly perfect molecular wires.Comment: 4 pages, 5 figures, 3 table

    Kinetic step bunching during surface growth

    Full text link
    We study the step bunching kinetic instability in a growing crystal surface characterized by anisotropic diffusion. The instability is due to the interplay between the elastic interactions and the alternation of step parameters. This instability is predicted to occur on a vicinal semiconductor surface Si(001) or Ge(001) during epitaxial growth. The maximal growth rate of the step bunching increases like F4F^{4}, where FF is the deposition flux. Our results are complemented with numerical simulations which reveals a coarsening behavior on the long time for the nonlinear step dynamics.Comment: 4 pages, 6 figures, submitted to PR

    Effect of step stiffness and diffusion anisotropy on the meandering of a growing vicinal surface

    Full text link
    We study the step meandering instability on a surface characterized by the alternation of terraces with different properties, as in the case of Si(001). The interplay between diffusion anisotropy and step stiffness induces a finite wavelength instability corresponding to a meandering mode. The instability sets in beyond a threshold value which depends on the relative magnitudes of the destabilizing flux and the stabilizing stiffness difference. The meander dynamics is governed by the conserved Kuramoto-Sivashinsky equation, which display spatiotemporal coarsening.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. (February 2006

    Thermodynamic ground states of platinum metal nitrides

    Get PDF
    The thermodynamic stabilities of various phases of the nitrides of the platinum metal elements are systematically studied using density functional theory. It is shown that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability with respect to those structures extends to 17 GPa for PtN2. Calculations show that the PtN2 simple tetragonal structures at this pressure are thermodynamically stable also with respect to phase separation. The fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures are further discussed.Comment: 5 pages, 4 figure

    Turbulent thermalization of weakly coupled non-abelian plasmas

    Full text link
    We study the dynamics of weakly coupled non-abelian plasmas within the frameworks of classical-statistical lattice gauge-theory and kinetic theory. We focus on a class of systems which are highly occupied, isotropic at all times and initially characterized by a single momentum scale. These represent an idealized version of the situation in relativistic heavy ion-collisions in the color-glass condensate picture, where on a time scale 1/Qs1/Q_s after the collision of heavy nuclei a longitudinally expanding plasma characterized by the saturation scale QsQ_s is formed. Our results indicate that the system evolves according to a turbulent Kolmogorov cascade in the classical regime. Taking this into account, the kinetic description is able to reproduce characteristic features of the evolution correctly.Comment: 8 pages, 6 figure

    Electromagnetic Momentum in Dispersive Dielectric Media

    Full text link
    When the effects of dispersion are included, neither the Abraham nor the Minkowski expression for electromagnetic momentum in a dielectric medium gives the correct recoil momentum for absorbers or emitters of radiation. The total momentum density associated with a field in a dielectric medium has three contributions: (i) the Abraham momentum density of the field, (ii) the momentum density associated with the Abraham force, and (iii) a momentum density arising from the dispersive part of the response of the medium to the field, the latter having a form evidently first derived by D.F. Nelson [Phys. Rev. A 44, 3985 (1991)]. All three contributions are required for momentum conservation in the recoil of an absorber or emitter in a dielectric medium. We consider the momentum exchanged and the force on a polarizable particle (e.g., an atom or a small dielectric sphere) in a host dielectric when a pulse of light is incident upon it, including the dispersion of the dielectric medium as well as a dispersive component in the response of the particle to the field. The force can be greatly increased in slow-light dielectric media.Comment: 9 pages. To be published by Optics Communication
    corecore