712 research outputs found

    Define Tomorrow to Set Our Course Initiative_ Request for Ideas

    Get PDF
    A request for ideas for revenue enhancements, cost reductions, program revisions, and reorganization options as part of the University of Maine\u27s Define Tomorrow initiative created in response to the COVID-19 pandemic. The initiative was developed by the Define Tomorrow Steering Committee led by Faye Gilbert, Interim Vice President for Academic Affairs and Provost, University of Maine. Includes a screenshot of the webpage regarding the Initiative and a copy of the call for ideas letter

    Effect of phase noise on useful quantum correlations in Bose Josephson junctions

    Full text link
    In a two-mode Bose Josephson junction the dynamics induced by a sudden quench of the tunnel amplitude leads to the periodic formation of entangled states. For instance, squeezed states are formed at short times and macroscopic superpositions of phase states at later times. The two modes of the junction can be viewed as the two arms of an interferometer; use of entangled states allows to perform atom interferometry beyond the classical limit. Decoherence due to the presence of noise degrades the quantum correlations between the atoms, thus reducing phase sensitivity of the interferometer. We consider the noise induced by stochastic fluctuations of the energies of the two modes of the junction. We analyze its effect on squeezed states and macroscopic superpositions and study quantitatively the amount of quantum correlations which can be used to enhance the phase sensitivity with respect to the classical limit. To this aim we compute the squeezing parameter and the quantum Fisher information during the quenched dynamics. For moderate noise intensities we show that these useful quantum correlations increase on time scales beyond the squeezing regime. This suggests multicomponent superpositions as interesting candidates for high-precision atom interferometry

    Ku70 Is Required for Late B Cell Development and Immunoglobulin Heavy Chain Class Switching

    Get PDF
    Immunoglobulin (Ig) heavy chain (HC) class switch recombination (CSR) is a late B cell process that involves intrachromosomal DNA rearrangement. Ku70 and Ku80 form a DNA end-binding complex required for DNA double strand break repair and V(D)J recombination. Ku70^(−/−) (K70T) mice, like recombination activating gene (RAG)-1– or RAG-2–deficient (R1T or R2T) mice, have impaired B and T cell development at an early progenitor stage, which is thought to result at least in part from defective V(D)J recombination (Gu, Y., K.J. Seidl, G.A. Rathbun, C. Zhu, J.P. Manis, N. van der Stoep, L. Davidson, H.L. Cheng, J.M. Sekiguchi, K. Frank, et al. 1997. Immunity. 7:653–665; Ouyang, H., A. Nussenzweig, A. Kurimasa, V.C. Soares, X. Li, C. Cordon-Cardo, W. Li, N. Cheong, M. Nussenzweig, G. Iliakis, et al. 1997. J. Exp. Med. 186:921–929). Therefore, to examine the potential role of Ku70 in CSR, we generated K70T mice that carry a germline Ig HC locus in which the JH region was replaced with a functionally rearranged VH(D)JH and Ig λ light chain transgene (referred to as K70T/HL mice). Previously, we have shown that B cells from R1T or R2T mice carrying these rearranged Ig genes (R1T/HL or R2T/HL mice) can undergo CSR to IgG isotypes (Lansford, R., J. Manis, E. Sonoda, K. Rajewsky, and F. Alt. 1998. Int. Immunol. 10:325–332). K70T/HL mice had significant numbers of peripheral surface IgM^+ B cells, which generated serum IgM levels similar to those of R2T/HL mice. However, in contrast to R2T/HL mice, K70T/HL mice had no detectable serum IgG isotypes. In vitro culture of K70T/HL B cells with agents that induce CSR in normal or R2T/HL B cells did lead to the induction of germline CH transcripts, indicating that initial signaling pathways for CSR were intact in K70T/HL cells. However, treatment with such agents did not lead to detectable CSR by K70T/HL B cells, and instead, led to cell death within 72 h. We conclude that Ku70 is required for the generation of B cells that have undergone Ig HC class switching. Potential roles for Ku70 in the CSR process are discusse

    Noise in Bose Josephson junctions: Decoherence and phase relaxation

    Full text link
    Squeezed states and macroscopic superpositions of coherent states have been predicted to be generated dynamically in Bose Josephson junctions. We solve exactly the quantum dynamics of such a junction in the presence of a classical noise coupled to the population-imbalance number operator (phase noise), accounting for, for example, the experimentally relevant fluctuations of the magnetic field. We calculate the correction to the decay of the visibility induced by the noise in the non-Markovian regime. Furthermore, we predict that such a noise induces an anomalous rate of decoherence among the components of the macroscopic superpositions, which is independent of the total number of atoms, leading to potential interferometric applications.Comment: Fig 2 added; version accepted for publicatio

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    EEG correlates of social interaction at distance

    Get PDF
    This study investigated EEG correlates of social interaction at distance between twenty-five pairs of participants who were not connected by any traditional channels of communication. Each session involved the application of 128 stimulations separated by intervals of random duration ranging from 4 to 6 seconds. One of the pair received a one-second stimulation from a light signal produced by an arrangement of red LEDs, and a simultaneous 500 Hz sinusoidal audio signal of the same length. The other member of the pair sat in an isolated sound-proof room, such that any sensory interaction between the pair was impossible. An analysis of the Event-Related Potentials associated with sensory stimulation using traditional averaging methods showed a distinct peak at approximately 300 ms, but only in the EEG activity of subjects who were directly stimulated. However, when a new algorithm was applied to the EEG activity based on the correlation between signals from all active electrodes, a weak but robust response was also detected in the EEG activity of the passive member of the pair, particularly within 9 – 10 Hz in the Alpha range. Using the Bootstrap method and the Monte Carlo emulation, this signal was found to be statistically significant

    Number squeezing, quantum fluctuations and oscillations in mesoscopic Bose Josephson junctions

    Full text link
    Starting from a quantum two-mode Bose-Hubbard Hamiltonian we determine the ground state properties, momentum distribution and dynamical evolution for a Bose Josephson junction realized by an ultracold Bose gas in a double-well trap. Varying the well asymmetry we identify Mott-like regions of parameters where number fluctuations are suppressed and the interference fringes in the momentum distribution are strongly reduced. We also show how Schroedinger cat states, realized from an initially phase coherent state by a sudden rise of the barrier among the two wells, will give rise to a destructive interference in the time-dependent momentum distribution.Comment: 4 pages, 3 figure

    Evolution of Li, Be and B in the Galaxy

    Get PDF
    In this paper we study the production of Li, Be and B nuclei by Galactic cosmic ray spallation processes. We include three kinds of processes: (i) spallation by light cosmic rays impinging on interstellar CNO nuclei (direct processes); (ii) spallation by CNO cosmic ray nuclei impinging on interstellar p and 4He (inverse processes); and (iii) alpha-alpha fusion reactions. The latter dominate the production of 6Li and 7Li. We calculate production rates for a closed-box Galactic model, verifying the quadratic dependence of the Be and B abundances for low values of Z. These are quite general results and are known to disagree with observations. We then show that the multi-zone multi-population model we used previously for other aspects of Galactic evolution produces quite good agreement with the linear trend observed at low metallicities without fine tuning. We argue that reported discrepancies between theory and observations do not represent a nucleosynthetic problem, but instead are the consequences of inaccurate treatments of Galactic evolution.Comment: 26 pages, 5 figures, LaTeX. The Astrophysical Journal, in pres
    corecore