13,561 research outputs found

    Use of Baited Pitfall Traps for Monitoring Pales Weevil, \u3ci\u3eHylobius Pales\u3c/i\u3e (Coleoptera: Curculionidae)

    Get PDF
    Pitfall traps baited with ethanol and turpentine serve as an effective tool for monitoring pales weevil (Hylobius pales) populations. Males and females are equally attracted to this bait. Neither component alone showed any attractiveness. The presence of a pine stem for weevil feeding does not affect the number or sex ratio of captured weevils. The potential of using attraction to baited traps as a sampling method for pales weevil is discussed

    What has NMR taught us about stripes and inhomogeneity?

    Full text link
    The purpose of this brief invited paper is to summarize what we have (not) learned from NMR on stripes and inhomogeneity in La{2-x}Sr{x}CuO{4}. We explain that the reality is far more complicated than generally accepted.Comment: Accepted for publication in the Proceedings of the LT-23 Conference (invited

    Noise sustained propagation: Local versus global noise

    Full text link
    We expand on prior results on noise supported signal propagation in arrays of coupled bistable elements. We present and compare experimental and numerical results for kink propagation under the influence of local and global fluctuations. As demonstrated previously for local noise, an optimum range of global noise power exists for which the medium acts as a reliable transmission ``channel''. We discuss implications for propagation failure in a model of cardiac tissue and present a general theoretical framework based on discrete kink statistics. Valid for generic bistable chains, the theory captures the essential features ob served in our experiments and numerical simulations.Comment: 1 latex file 20 pages, 9 figures. Accepted for publication in Physical Review

    Book Reviews

    Get PDF

    An acoustic charge transport imager for high definition television applications

    Get PDF
    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4

    Synaptic Reorganization of Inhibitory Hilar Interneuron Circuitry After Traumatic Brain Injury in Mice

    Get PDF
    Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8–13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus. Despite reduced inhibitory input to granule cells, action potential and EPSC frequencies were increased in hilar GABA neurons from slices ipsilateral to the injury versus those from control or contralateral slices. Furthermore, increased excitatory synaptic activity was detected in hilar GABA neurons ipsilateral to the injury after glutamate photostimulation of either the granule cell or CA3 pyramidal cell layers. Together, these findings suggest that excitatory drive to surviving hilar GABA neurons is enhanced by convergent input from both pyramidal and granule cells, but synaptic inhibition of granule cells is not fully restored after injury. This rewiring of circuitry regulating hilar inhibitory neurons may reflect an important compensatory mechanism, but it may also contribute to network destabilization by increasing the relative impact of surviving individual interneurons in controlling granule cell excitability in the posttraumatic dentate gyrus

    An acoustic charge transport imager for high definition television applications

    Get PDF
    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail

    Carotid Intima-Media Thickness Progression in HIV-Infected Adults Occurs Preferentially at the Carotid Bifurcation and Is Predicted by Inflammation.

    Get PDF
    BackgroundShear stress gradients and inflammation have been causally associated with atherosclerosis development in carotid bifurcation regions. The mechanism underlying higher levels of carotid intima-media thickness observed among HIV-infected individuals remains unknown.Methods and resultsWe measured carotid intima-media thickness progression and development of plaque in the common carotid, bifurcation region, and internal carotid artery in 300 HIV-infected persons and 47 controls. The median duration of follow-up was 2.4 years. When all segments were included, the rate of intima-media thickness progression was greater in HIV-infected subjects compared with controls after adjustment for traditional risk factors (0.055 vs. 0.024 mm/year, P=0.016). Rate of progression was also greater in the bifurcation region (0.067 vs. 0.025 mm/year, P=0.042) whereas differences were smaller in the common and internal regions. HIV-infected individuals had a greater incidence of plaque compared with controls in the internal (23% vs. 6.4%, P=0.0037) and bifurcation regions (34% vs. 17%, P=0.014). Among HIV-infected individuals, the rate of progression in the bifurcation region was more rapid compared with the common carotid, internal, or mean intima-media thickness; in contrast, progression rates among controls were similar at all sites. Baseline hsCRP was elevated in HIV-infected persons and was a predictor of progression in the bifurcation region.ConclusionsAtherosclerosis progresses preferentially in the carotid bifurcation region in HIV-infected individuals. hsCRP, a marker of inflammation, is elevated in HIV and is associated with progression in the bifurcation region. These data are consistent with a model in which the interplay between hemodynamic shear stresses and HIV-associated inflammation contribute to accelerated atherosclerosis. (J Am Heart Assoc. 2012;1:jah3-e000422 doi: 10.1161/JAHA.111.000422.)Clinical trial registrationURL: http://clinicaltrials.gov. Unique identifier: NCT01519141

    Accelerating Markov Chain Monte Carlo sampling with diffusion models

    Full text link
    Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the MCMC run. Our approach leads to a significant reduction in the number of likelihood evaluations required to obtain an accurate representation of the Bayesian posterior across several analytic functions, as well as for a physical example based on a global analysis of parton distribution functions. Our method is extensible to other MCMC techniques, and we briefly compare our method to similar approaches based on normalizing flows. A code implementation can be found at https://github.com/NickHunt-Smith/MCMC-diffusion.Comment: 21 pages, 8 figures, 1 tabl
    corecore