1,528 research outputs found
Freedom of Assembly and Racial Demonstrations
We have chosen to discuss and undertake to determine the precise point at which an assemblage of persons engaged in a racial demonstration loses constitutional protection and becomes instead an unlawful assembly, punishable as such under the common law or under state statutes or ordinances which embody the common law. To accomplish this purpose, we shall first attempt to define the crime of unlawful assembly ; then we shall discuss breach of the peace because it is so intimately connected with the offense of unlawful assembly. This article will conclude with examples of situations in which racial demonstrations are, or are not, unlawful assemblies; for that purpose we will concern ourselves with three types of racial demonstrations: (1) sit-in demonstrations, (2) picketing of eating places, and (3) parades of armed or unarmed demonstrators
Recommended from our members
Innovative Selective Laser Sintering Rapid Manufacturing using Nanotechnology
The objective of this research is to develop an improved nylon 11 (polyamide 11) polymer
with enhanced flame retardancy, thermal, and mechanical properties for selective laser sintering
(SLS) rapid manufacturing (RM). A nanophase was introduced into nylon 11 via twin screw
extrusion to provide improved material properties of the polymer blends. Atofina (now known
as Arkema) RILSAN® nylon 11 injection molding polymer pellets was used with three types of
nanoparticles: chemically modified montmorillonite (MMT) organoclays, nanosilica, and carbon
nanofibers (CNF) to create nylon 11 nanocomposites. Wide angle X-ray diffraction (WAXD)
and transmission electron microscopy (TEM) were used to determine the degree of dispersion.
Fifteen nylon 11 nanocomposites and control nylon 11 were fabricated by injection molding.
Flammability properties (using a cone calorimeter with a radiant flux of 50 kW/m2
) and
mechanical properties such as tensile strength and modulus, flexural modulus, elongation at
break were determined for the nylon 11 nanocomposites and compared with the baseline nylon
11. Based on flammability and mechanical material performance, five polymers including four
nylon 11 nanocomposites and a control nylon 11 were cryogenically ground into fine powders
for SLS RM. SLS specimens were fabricated for flammability, mechanical, and thermal
properties characterization. Nylon 11-CNF nanocomposites exhibited the best overall properties
for this study.Mechanical Engineerin
Rapid screening of environmental chemicals for estrogen receptor binding capacity.
Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions
- …