1,683 research outputs found

    Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability

    Get PDF
    In collisionless and weakly collisional plasmas, such as hot accretion flows onto compact objects, the magnetorotational instability (MRI) can differ significantly from the standard (collisional) MRI. In particular, pressure anisotropy with respect to the local magnetic-field direction can both change the linear MRI dispersion relation and cause nonlinear modifications to the mode structure and growth rate, even when the field and flow perturbations are small. This work studies these pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta regime, before the MRI saturates into strong turbulence. Our goal is to better understand how the saturation of the MRI in a low collisionality plasma might differ from that in the collisional regime. We focus on two key effects: (i) the direct impact of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode, and (ii) the influence of pressure anisotropy on the "parasitic instabilities" that are suspected to cause the mode to break up into turbulence. Our main conclusions are: (i) The mirror instability regulates the pressure anisotropy in such a way that the linear MRI in a collisionless plasma is an approximate nonlinear solution once the mode amplitude becomes larger than the background field (just as in MHD). This implies that differences between the collisionless and collisional MRI become unimportant at large amplitudes. (ii) The break up of large amplitude MRI modes into turbulence via parasitic instabilities is similar in collisionless and collisional plasmas. Together, these conclusions suggest that the route to magnetorotational turbulence in a collisionless plasma may well be similar to that in a collisional plasma, as suggested by recent kinetic simulations. As a supplement to these findings, we offer guidance for the design of future kinetic simulations of magnetorotational turbulence.Comment: Submitted to Journal of Plasma Physic

    Magnetorotational Turbulence and Dynamo in a Collisionless Plasma

    Full text link
    We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disc. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatio-temporally variable. Energy spectra suggest an Alfv\'en-wave cascade at large scales and a kinetic-Alfv\'en-wave cascade at small scales, with strong small-scale density fluctuations and weak non-axisymmetric density waves. Ions undergo non-thermal particle acceleration, their distribution accurately described by a kappa distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.Comment: 6 pages, 6 figures, accepted for publication in Physical Review Letter

    The Right Development of Mount Desert

    Get PDF
    A privately printed piece discussing advantages and disadvantages of economic and residential development of the area of Mount Desert Island, Maine, and the relationships between summer and year round residents

    Magneto-immutable turbulence in weakly collisional plasmas

    Get PDF
    We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect "magneto-immutability" by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless, weakly magnetized (high-β\beta) plasmas its dynamical relevance is similar to that of incompressibility. Simulations of magnetized turbulence using the weakly collisional Braginskii model show that magneto-immutable turbulence is surprisingly similar, in most statistical measures, to critically balanced MHD turbulence. However, in order to minimize magnetic-field variation, the flow direction becomes more constrained than in MHD, and the turbulence is more strongly dominated by magnetic energy (a nonzero "residual energy"). These effects represent key differences between pressure-anisotropic and fluid turbulence, and should be observable in the β≳1\beta\gtrsim1 turbulent solar wind.Comment: Accepted for publication in J. Plasma Phy

    The urban geography of Beirut

    Get PDF
    This thesis concentrates on those factors important to the geography of the economic and social organisation of Beirut for which reasonably reliable material could be obtained. This results in three main groups, namely the pattern of land values (III), the socio-economic morphology (IV) and business land use (V). Two minor sections, the physical background (I) and the historical background (II) introduce the physical and temporal setting of the city. The land values pattern exhibits features characteristic of both western and non western cities, with the direction of change being distinctly towards the western pattern. The same is true of the socio-economic morphology and the business land use. Relics of the old oriental pattern still stand out against the flood-tide of increasing westernisation. Further, there is marked a real differentiation of rate of change within the city itself. Wherever possible, material has been quantified to provide a basis for future comparative studies. Elsewhere comments are based on personal study of the situation with local inhabitants. The increasingly sophisticated nature of urban theory is recognised by the author but in view of the lack of comparative data this thesis remains a largely empirical study. It is hoped that it will add to the compendium of individual studies of Middle Eastern cities on which comprehensive theories of Middle Eastern urban geography can in future be based

    A "fair sampling" perspective on an apparent violation of duality

    Full text link
    In the event in which a quantum mechanical particle can pass from an initial state to a final state along two possible paths, the duality principle states that "the simultaneous observation of wave and particle behavior is prohibited". [M. O. Scully, B.-G. Englert, and H. Walther. Nature, 351:111-116, 1991.] emphasized the importance of additional degrees of freedom in the context of complementarity. In this paper, we show how the consequences of duality change when allowing for biased sampling, that is, postselected measurements on specific degrees of freedom of the environment of the two-path state. Our work contributes to the explanation of previous experimental apparent violations of duality [R. Menzel, D. Puhlmann, A. Heuer, and W. P. Schleich. Proc. Natl. Acad. Sci., 109(24):9314-9319, 2012.] and opens up the way for novel experimental tests of duality.Comment: 10 pages, 8 figure

    Transition from collisionless to collisional MRI

    Full text link
    Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2\pi/k_{\Par}. In the weak magnetic field regime where the Alfv\'en and MRI frequencies ω\omega are small compared to the sound wave frequency k_{\Par} c_0, the dynamics are still effectively collisionless even if ω≪ν\omega \ll \nu, so long as the collision frequency \nu \ll k_{\Par} c_{0}; for an accretion flow this requires \nu \lsim \Omega \sqrt{\beta}. The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.Comment: 20 pages, 4 figures, submitted to ApJ with a clearer derivation of anisotropic pressure closure from drift kinetic equatio
    • …
    corecore