3,796 research outputs found

    Design and evaluation of low cost blades for large wind driven generating systems

    Get PDF
    The development and evaluation of a low cost blade concept based on the NASA-Lewis specifications is discussed. A blade structure was designed and construction methods and materials were selected. Complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program was conducted to provide data and to verify the design. A test specimen of the spar assembly, including the root end attachment, was fabricated. This is a full-scale specimen of the root end configuration, 20 ft long. A blade design for the Mod '0' system was completed

    Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

    Full text link
    We use the density matrix renormalization group (DMRG) for transfer matrices to numerically calculate impurity corrections to thermodynamic properties. The method is applied to two impurity models in the spin-1/2 chain, namely a weak link in the chain and an external impurity spin. The numerical analysis confirms the field theory calculations and gives new results for the crossover behavior.Comment: 9 pages in revtex format including 5 embedded figures (using epsf). To appear in PRB. The latest version in PDF format can be found at http://fy.chalmers.se/~eggert/papers/DMRGimp.pd

    The LHC Experimental Programme

    Full text link

    Edge Logarithmic Corrections probed by Impurity NMR

    Get PDF
    Semi-infinite quantum spin chains display spin autocorrelations near the boundary with power-law exponents that are given by boundary conformal field theories. We show that NMR measurements on spinless impurities that break a quantum spin chain lead to a spin-lattice relaxation rate 1/T_1^edge that has a temperature dependence which is a direct probe of the anomalous boundary exponents. For the antiferromagnetic S=1/2 spin chain, we show that 1/T_1^edge behaves as T (log T)^2 instead of (log T)^1/2 for a bulk measurement. We show that, in the case of a one-dimensional conductor described by a Luttinger liquid, a similar measurement leads to a relaxation rate 1/T_1^{edge} behaving as T, independent of the anomalous exponent K_rho.Comment: 4 pages, 1 encapsulated figure, corrected typo

    Numerical Evidence for Multiplicative Logarithmic Corrections from Marginal Operators

    Full text link
    Field theory calculations predict multiplicative logarithmic corrections to correlation functions from marginally irrelevant operators. However, for the numerically most suitable model - the spin-1/2 chain - these corrections have been controversial. In this paper, the spin-spin correlation function of the antiferromagnetic spin-1/2 chain is calculated numerically in the presence of a next nearest neighbor coupling J2 for chains of up to 32 sites. By varying the coupling strength J2 we can control the effect of the marginal operator, and our results unambiguously confirm the field theory predictions. The critical value at which the marginal operator vanishes has been determined to be at J2 = 0.241167 +/- 0.000005J.Comment: revised paper with extended data-analysis. 5 pages, using revtex with 4 embedded figures (included with macro). A complete postscript file with all figures + text (5 pages) is available from http://FY.CHALMERS.SE/~eggert/marginal.ps or by request from [email protected]

    Design and evaluation of low-cost stainless steel fiberglass foam blades for large wind driven generating systems

    Get PDF
    A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables

    Universal alternating order around impurities in antiferromagnets

    Full text link
    The study of impurities in antiferromagnets is of considerable interest in condensed matter physics. In this paper we address the elementary question of the effect of vacancies on the orientation of the surrounding magnetic moments in an antiferromagnet. In the presence of a magnetic field, alternating magnetic moments are induced, which can be described by a universal expression that is valid in any ordered antiferromagnet and turns out to be independent of temperature over a large range. The universality is not destroyed by quantum fluctuation, which is demonstrated by quantum Monte Carlo simulations in the two-dimensional Heisenberg antiferromagnet. Physical predictions for finite doping are made, which are relevant for experiments probing Knight shifts and the order parameter.Comment: 5 pages, 2 figures. The most recent version in PDF format can be found at http://www.physik.uni-kl.de/eggert/papers

    Phase diagram of an impurity in the spin-1/2 chain: two channel Kondo effect versus Curie law

    Full text link
    We consider a magnetic s=1/2 impurity in the antiferromagnetic spin chain as a function of two coupling parameters: the symmetric coupling of the impurity to two sites in the chain J1J_1 and the coupling between the two sites J2J_2. By using field theory arguments and numerical calculations we can identify all possible fixed points and classify the renormalization flow between them, which leads to a non-trivial phase diagram. Depending on the detailed choice of the two (frustrating) coupling strengths, the stable phases correspond either to a decoupled spin with Curie law behavior or to a non-Fermi liquid fixed point with a logarithmically diverging impurity susceptibility as in the two channel Kondo effect. Our results resolve a controversy about the renormalization flow.Comment: 5 pages in revtex format including 4 embedded figures (using epsf). The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/phase-diagram.pd

    Universal cross-over behavior of a magnetic impurity and consequences for doping in spin-1/2 chains

    Full text link
    We consider a magnetic impurity in the antiferromagnetic spin-1/2 chain which is equivalent to the two-channel Kondo problem in terms of the field theoretical description. Using a modification of the transfer-matrix density matrix renormalization group (DMRG) we are able to determine local and global properties in the thermodynamic limit. The cross-over function for the impurity susceptibility is calculated over a large temperature range, which exhibits universal data-collapse. We are also able to determine the local susceptibilities near the impurity, which show an interesting competition of boundary effects. This results in quantitative predictions for experiments on doped spin-1/2 chains, which could observe two-channel Kondo physics directly.Comment: 5 pages in revtex format including 3 embedded figures (using epsf). The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/crossover.pdf . Accepted by PR
    corecore