568 research outputs found

    Predicting sinusoidal obstruction syndrome after allogeneic stem cell transplantation with the EASIX biomarker panel

    Get PDF
    No biomarker panel is established for prediction of sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), a major complication of allogeneic stem cell transplantation (alloSCT). We compared the potential of the Endothelial Activation and Stress Index (EASIX), based on lactate dehydrogenase, creatinine, and thrombocytes, with that of the SOS/VOD CIBMTR clinical risk score to predict SOS/VOD in two independent cohorts. In a third cohort, we studied the impact of endothelium-active prophylaxis with pravastatin and ursodeoxycholic acid (UDA) on SOS/VOD risk. The cumulative incidence of SOS/VOD within 28 days after alloSCT in the training cohort (Berlin, 2013-2015, n=446) and in the validation cohort (Heidelberg, 2002-2009, n=380) was 9.6% and 8.4%, respectively. In both cohorts, EASIX assessed at the day of alloSCT (EASIX-d0) was significantly associated with SOS/VOD incidence (p<0.0001), overall survival (OS) and non-relapse mortality (NRM). In contrast, the CIBMTR score showed no statistically significant association with SOS/VOD incidence, and did not predict OS and NRM. In patients receiving pravastatin/UDA, the cumulative incidence of SOS/VOD was significantly lower at 1.7% (p<0.0001, Heidelberg, 2010-2015, n=359) than in the two cohorts not receiving pravastatin/UDA. The protective effect was most pronounced in patients with high EASIX-d0. The cumulative SOS/VOD incidence in the highest EASIX-d0 quartiles were 18.1% and 16.8% in both cohorts without endothelial prophylaxis as compared to 2.2% in patients with pravastatin/UDA prophylaxis (p<0.0001). EASIX-d0 is the first validated biomarker for defining a subpopulation of alloSCT recipients at high risk for SOS/VOD. Statin/UDA endothelial prophylaxis could constitute a prophylactic measure for patients at increased SOS/VOD risk

    Source Analysis of the Crandall Canyon, Utah, Mine Collapse

    Full text link

    Regional Analysis of Lg Attenuation: Comparison of 1D Methods in Northern California and Application to the Yellow Sea / Korean Peninsula

    Get PDF
    The measurement of regional attenuation Q{sup -1} can produce method dependent results. The discrepancies among methods are due to differing parameterizations (e.g., geometrical spreading rates), employed datasets (e.g., choice of path lengths and sources), and methodologies themselves (e.g., measurement in the frequency or time domain). We apply the coda normalization (CN), two-station (TS), reverse two-station (RTS), source-pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure Q of the regional phase, Lg (Q{sub Lg}), and its power-law dependence on frequency of the form Q{sub 0}f{sup {eta}} with controlled parameterization in the well-studied region of northern California using a high-quality dataset from the Berkeley Digital Seismic Network. We test the sensitivity of each method to changes in geometrical spreading, Lg frequency bandwidth, the distance range of data, and the Lg measurement window. For a given method, there are significant differences in the power-law parameters, Q{sub 0} and {eta}, due to perturbations in the parameterization when evaluated using a conservative pairwise comparison. The CN method is affected most by changes in the distance range, which is most probably due to its fixed coda measurement window. Since, the CS method is best used to calculate the total path attenuation, it is very sensitive to the geometrical spreading assumption. The TS method is most sensitive to the frequency bandwidth, which may be due to its incomplete extraction of the site term. The RTS method is insensitive to parameterization choice, whereas the SPRP method as implemented here in the time-domain for a single path has great error in the power-law model parameters and {eta} is greatly affected by changes in the method parameterization. When presenting results for a given method it is best to calculate Q{sub 0}f{sup {eta}} for multiple parameterizations using some a priori distribution. We also investigate the difference in power-law Q calculated among the methods by considering only an approximately homogeneous subset of our data. All methods return similar power-law parameters, though the 95% confidence region is large. We adapt the CS method to calculate Q{sub Lg} tomography in northern California. Preliminary results show that by correcting for the source, tomography with the CS method may produce better resolved attenuation structure

    ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data.

    Get PDF
    Abstract Motivation The study of immunoglobulins and T cell receptors using next-generation sequencing has finally allowed exploring immune repertoires and responses in their immense variability and complexity. Unsurprisingly, their analysis and interpretation is a highly convoluted task. Results We thus implemented ARResT/Interrogate, a web-based, interactive application. It can organize and filter large amounts of immunogenetic data by numerous criteria, calculate several relevant statistics, and present results in the form of multiple interconnected visualizations. Availability and Implementation ARResT/Interrogate is implemented primarily in R, and is freely available at http://bat.infspire.org/arrest/interrogate/ Supplementary information Supplementary data are available at Bioinformatics online
    • …
    corecore