32 research outputs found

    In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cervical cancer is the second most prevalent cancer for the woman in the world. It is caused by the oncogenic human papilloma virus (HPV). The inhibition activity of histone deacetylase (HDAC) is a potential strategy for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is widely known as a low toxicity HDAC inhibitor. This research presents <it>in silico</it> SAHA modification by utilizing triazole, in order to obtain a better inhibitor. We conducted docking of the SAHA inhibitor and 12 modified versions to six class II HDAC enzymes, and then proceeded with drug scanning of each one of them.</p> <p>Results</p> <p>The docking results show that the 12 modified inhibitors have much better binding affinity and inhibition potential than SAHA. Based on drug scan analysis, six of the modified inhibitors have robust pharmacological attributes, as revealed by drug likeness, drug score, oral bioavailability, and toxicity levels.</p> <p>Conclusions</p> <p>The binding affinity, free energy and drug scan screening of the best inhibitors have shown that 1c and 2c modified inhibitors are the best ones to inhibit class II HDAC.</p

    Loss of Regulator of G Protein Signaling 5 Exacerbates Obesity, Hepatic Steatosis, Inflammation and Insulin Resistance

    Get PDF
    BACKGROUND: The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF). METHODOLOGY/PRINCIPAL FINDINGS: Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBι and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance

    Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury

    No full text
    Chondroitinase ABC (ChABC) in combination with rehabilitation has been shown to promote functional recovery in acute spinal cord injury. For clinical use, the optimal treatment window is concurrent with the beginning of rehabilitation, usually 2-4 weeks after injury. We show that ChABC is effective when given 4 weeks after injury combined with rehabilitation. After C4 dorsal spinal cord injury, rats received no treatment for 4 weeks. They then received either ChABC or penicillinase control treatment followed by hour-long daily rehabilitation specific for skilled paw reaching. Animals that received both ChABC and task-specific rehabilitation showed the greatest recovery in skilled paw reaching, approaching similar levels to animals that were treated at the time of injury. There was also a modest increase in skilled paw reaching ability in animals receiving task-specific rehabilitation alone. Animals treated with ChABC and task-specific rehabilitation also showed improvement in ladder and beam walking. ChABC increased sprouting of the corticospinal tract, and these sprouts had more vGlut1(+ve) presynaptic boutons than controls. Animals that received rehabilitation showed an increase in perineuronal net number and staining intensity. Our results indicate that ChABC treatment opens a window of opportunity in chronic spinal cord lesions, allowing rehabilitation to improve functional recovery.</p

    Chondroitin Sulfates in Axon Regeneration and Plasticity

    No full text

    Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data

    No full text
    We performed a phylogenetic analysis of the crustacean class Remipedia. For this purpose, we generated sequences of three different molecular markers, 16S rRNA (16S), histone 3 (H3), and cytochrome c oxidase subunit I (COI). The analyses included sequences from 20 of the 27 recent species of Remipedia, plus four still-undescribed species. The data matrix was complemented with sequences from online databases (The European Molecular Biology Laboratory and GenBankÂŽ). Campodea tillyardi (Diplura), Hutchinsoniella macracantha (Cephalocarida), Penaeus monodon (Malacostraca) and Branchinella occidentalis (Branchiopoda) served as out-groups. In addition to the classic computer-based alignment methods used for protein-coding markers (H3 and COI), an alternative approach combining structural alignment and manual optimization was used for 16S. The results of our analyses uncovered several inconsistencies with the current taxonomic classification of Remipedia. Godzilliidae and the genera Speleonectes and Lasionectes are polyphyletic, while Speleonectidae emerges as a paraphyletic group. We discuss current taxonomic diagnoses based on morphologic characters, and suggest a taxonomic revision that accords with the topologies of the phylogenetic analyses. Three new families (Kumongidae, Pleomothridae, and Cryptocorynetidae) as well as three new genera (Kumonga, Angirasu, and Xibalbanus) are erected. The family Morlockiidae and the genus Morlockia are removed from synonymy and returned to separate status.Mario Hoenemann, Marco T. Neiber, William F. Humphreys, Thomas M. Iliffe, Difei Li, Frederick R. Schram, Stefan Koeneman

    Mesenchymal stromal cells integrate and form longitudinally-aligned layers when delivered to injured spinal cord via a novel fibrin scaffold

    Get PDF
    AbstractMesenchymal stromal cells (MSCs) have been shown to promote healing and regeneration in a number of CNS injury models and therefore there is much interest in the clinical use of these cells. For spinal cord injuries, a standard delivery method for MSCs is intraspinal injection, but this can result in additional injury and provides little control over how the cells integrate into the tissue. The present study examines the use of a novel fibrin scaffold as a new method of delivering MSCs to injured spinal cord. Use of the fibrin scaffold resulted in the formation of longitudinally-aligned layers of MSCs growing over the spinal cord lesion site. Host neurites were able to migrate into this MSC architecture and grow longitudinally. The length of the MSC bridge corresponded to the length of the fibrin scaffold. MSCs that were delivered via intraspinal injection were mainly oriented perpendicular to the plane of the spinal cord and remained largely restricted to the lesion site. Host neurites within the injected MSC graft were also oriented perpendicular to the plane of the spinal cord
    corecore