8,199 research outputs found

    Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity

    Get PDF
    The fractal spectrum of magnetic minibands (Hofstadter butterfly), induced by the moir\'e super- lattice of graphene on an hexagonal crystal substrate, is known to exhibit gapped Dirac cones. We show that the gap can be closed by slightly misaligning the substrate, producing a hierarchy of conical singularities (Dirac points) in the band structure at rational values Phi = (p/q)(h/e) of the magnetic flux per supercell. Each Dirac point signals a switch of the topological quantum number in the connected component of the quantum Hall phase diagram. Model calculations reveal the scale invariant conductivity sigma = 2qe^2 / pi h and Klein tunneling associated with massless Dirac fermions at these connectivity switches.Comment: 4 pages, 6 figures + appendix (3 pages, 1 figure

    Andreev reflection from a topological superconductor with chiral symmetry

    Get PDF
    It was pointed out by Tewari and Sau that chiral symmetry (H -> -H if e h) of the Hamiltonian of electron-hole (e-h) excitations in an N-mode superconducting wire is associated with a topological quantum number Q\in\mathbb{Z} (symmetry class BDI). Here we show that Q=Tr(r_{he}) equals the trace of the matrix of Andreev reflection amplitudes, providing a link with the electrical conductance G. We derive G=(2e^2/h)|Q| for |Q|=N,N-1, and more generally provide a Q-dependent upper and lower bound on G. We calculate the probability distribution P(G) for chaotic scattering, in the circular ensemble of random-matrix theory, to obtain the Q-dependence of weak localization and mesoscopic conductance fluctuations. We investigate the effects of chiral symmetry breaking by spin-orbit coupling of the transverse momentum (causing a class BDI-to-D crossover), in a model of a disordered semiconductor nanowire with induced superconductivity. For wire widths less than the spin-orbit coupling length, the conductance as a function of chemical potential can show a sequence of 2e^2/h steps - insensitive to disorder.Comment: 10 pages, 5 figures. Corrected typo (missing square root) in equations A13 and A1

    Bimodal conductance distribution of Kitaev edge modes in topological superconductors

    Get PDF
    A two-dimensional superconductor with spin-triplet p-wave pairing supports chiral or helical Majorana edge modes with a quantized (length LL-independent) thermal conductance. Sufficiently strong anisotropy removes both chirality and helicity, doubling the conductance in the clean system and imposing a super-Ohmic 1/L1/\sqrt{L} decay in the presence of disorder. We explain the absence of localization in the framework of the Kitaev Hamiltonian, contrasting the edge modes of the two-dimensional system with the one-dimensional Kitaev chain. While the disordered Kitaev chain has a log-normal conductance distribution peaked at an exponentially small value, the Kitaev edge has a bimodal distribution with a second peak near the conductance quantum. Shot noise provides an alternative, purely electrical method of detection of these charge-neutral edge modes.Comment: 11 pages, 13 figure

    Topologically protected charge transfer along the edge of a chiral p\textit{p}-wave superconductor

    Get PDF
    The Majorana fermions propagating along the edge of a topological superconductor with px+ipyp_x+ip_y pairing deliver a shot noise power of 12Ă—e2/h\frac{1}{2}\times e^2/h per eV of voltage bias. We calculate the full counting statistics of the transferred charge and find that it becomes trinomial in the low-temperature limit, distinct from the binomial statistics of charge-ee transfer in a single-mode nanowire or charge-2e2e transfer through a normal-superconductor interface. All even-order correlators of current fluctuations have a universal quantized value, insensitive to disorder and decoherence. These electrical signatures are experimentally accessible, because they persist for temperatures and voltages large compared to the Thouless energy.Comment: 5 pages, 4 figures. v3 [post-publication]: added an appendix on the effect of a tunnel barrier at the normal-superconductor contac

    Phase-locked magnetoconductance oscillations as a probe of Majorana edge states

    Get PDF
    We calculate the Andreev conductance of a superconducting ring interrupted by a flux-biased Josephson junction, searching for electrical signatures of circulating edge states. Two-dimensional pair potentials of spin-singlet d-wave and spin-triplet p-wave symmetry support, respectively, (chiral) Dirac modes and (chiral or helical) Majorana modes. These produce h/e-periodic magnetoconductance oscillations of amplitude \simeq (e^{2}/h)N^{-1/2}, measured via an N-mode point contact at the inner or outer perimeter of the grounded ring. For Dirac modes the oscillations in the two contacts are independent, while for an unpaired Majorana mode they are phase locked by a topological phase transition at the Josephson junction.Comment: 10 pages, 6 figures. New appendix on the gauge invariant discretization of the Bogoliubov-De Gennes equation. Accepted for publication in PR

    The Multilingual design of the EuroWordNet Database

    Get PDF
    This paper discusses the design of the EuroWordNet database, in which semantic databases like WordNet1.5 for several languages are combined via an inter-lingua. In this database, language-independent data is shared and language-specific properties are maintained as well. A special interface has been developed to compare the semantic configurations across languages and to track down differences. The pragmatic design of the database makes it possible to gather empirical evidence for a common cross-linguistic ontology. Abstract This paper discusses the design of the EuroWordNet database, in which semantic databases like WordNet1.5 for several languages are combined via a so-called interlingual -index. In this database, languageindependent data is shared and languagespecific properties are maintained as well. A special interface has been developed to compare the semantic configurations across languages and to track down differences. The pragmatic design of the database makes it possible..

    Atomic Interferometer with Amplitude Gratings of Light and its Applications to Atom Based Tests of the Equivalence Principle

    Full text link
    We have developed a matter wave interferometer based on the diffraction of atoms from effective absorption gratings of light. In a setup with cold rubidium atoms in an atomic fountain the interferometer has been used to carry out tests of the equivalence principle on an atomic basis. The gravitational acceleration of the two isotopes 85Rb and 87Rb was compared, yielding a difference Dg/g =(1.2 +-1.7)x10^{-7}. We also perform a differential free fall measurement of atoms in two different hyperfine states, and obtained a result of Dg/g =(0.4 +-1.2)x10^{-7}.Comment: 4 Pages, 4 figures, accepted for Physical Review Letter

    Bloch oscillations in an aperiodic one-dimensional potential

    Get PDF
    We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-electron states separated by two mobility edges. We show that the electric field promotes sustained Bloch oscillations of an initial Gaussian wave packet whose amplitude reflects the band width of extended states. The frequency of these oscillations exhibit unique features, such as a sensitivity to the initial wave packet position and a multimode structure for weak fields, originating from the characteristics of the underlying aperiodic potential.Comment: 6 pages, 7 figure
    • …
    corecore