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Andreev reflection from a topological superconductor with chiral symmetry
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It was pointed out by Tewari and Sau that chiral symmetry (H �→ −H if e ↔ h) of the Hamiltonian of
electron-hole (e-h) excitations in an N -mode superconducting wire is associated with a topological quantum
number Q ∈ Z (symmetry class BDI). Here we show that Q = Tr rhe equals the trace of the matrix of Andreev
reflection amplitudes, providing a link with the electrical conductance G. We derive G = (2e2/h)|Q| for |Q| =
N,N − 1, and more generally provide a Q-dependent upper and lower bound on G. We calculate the probability
distribution P (G) for chaotic scattering, in the circular ensemble of random-matrix theory, to obtain the Q

dependence of weak localization and mesoscopic conductance fluctuations. We investigate the effects of chiral
symmetry breaking by spin-orbit coupling of the transverse momentum (causing a class BDI-to-D crossover), in
a model of a disordered semiconductor nanowire with induced superconductivity. For wire widths less than the
spin-orbit coupling length, the conductance as a function of chemical potential can show a sequence of 2e2/h

steps—insensitive to disorder.
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I. INTRODUCTION

The classification of topological states of matter, the so-
called tenfold way,1 has five topologically nontrivial symme-
try classes in each dimensionality.2 For a one-dimensional
wire geometry, two of these five describe a topological
superconductor and the other three a topological insulator.
Each symmetry class has a topological quantum number
Q that counts the number of protected bound states at the
end of the wire. These end states are of particular interest
in the topological superconductors because they are pinned
at zero excitation energy by electron-hole symmetry and
are a condensed matter realization of Majorana fermions.3

Signatures of Majorana zero modes have been reported in
conductance measurements on InSb and InAs nanowires,
deposited on a superconducting substrate.4–6

A key distinction between superconducting and insulating
wires is that Q ∈ Z2 is a parity index in a topological
superconductor, while all integer values Q ∈ Z can appear
in a topological insulator. In other words, while there can be
any number of protected end states in an insulating wire, pairs
of Majorana zero modes have no topological protection. The
symmetry that prevents the pairwise annihilation of end states
in an insulating wire is a so-called chiral symmetry of the
Hamiltonian: H �→ −H upon exchange α ↔ β of an internal
degree of freedom, typically a sublattice index.

In an interesting recent development,7 Tewari and Sau
have argued (motivated by Ref. 8) that an approximate chiral
symmetry may stabilize pairs of Majorana zero modes in a
sufficiently narrow nanowire. The symmetry H �→ −H when
e ↔ h involves the exchange of electron and hole indices e,
h.9 It is distinct from electron-hole symmetry, which involves
a complex conjugation H �→ −H ∗ and is a fundamental
symmetry of the problem. The combination of chiral symmetry
and electron-hole symmetry promotes the superconductor
from symmetry class D to symmetry class BDI, extending
the range of allowed values of Q from Z2 to Z.

In this paper we investigate the consequences of chiral sym-
metry for the electrical conductance of the superconducting
nanowire, attached at the end to a normal metal contact (see

Fig. 1). The conductance G is determined by the matrix rhe of
Andreev reflection amplitudes (from e to h, at the Fermi level),

G = 2e2

h
Tr rher

†
he, (1)

at low bias voltages and low temperatures and assuming that
there is no transmission from one end of the wire to the other
end. We will show that the topological quantum number Q ∈ Z
in the presence of chiral symmetry is directly related to the
Andreev reflection matrix,

Q = Tr rhe. (2)

The intimate relation between transport and topology ex-
pressed by these two equations allows us to make specific
predictions for the Q dependence of G.

The outline of the paper is as follows. In the next section
we derive Eq. (2) from the general scattering formulation of
one-dimensional topological invariants,10 and obtain model-
independent results for the relation between G and Q. More
specific results are obtained in Sec. III using random-matrix
theory,11 under the assumption of chaotic scattering at the NS
interface. Then in Sec. IV we numerically study a microscopic
model of a superconducting nanowire12,13 to test our analytical
predictions in the presence of a realistic amount of chiral
symmetry breaking. We conclude in Sec. V.

II. RELATION BETWEEN CONDUCTANCE AND
TOPOLOGICAL QUANTUM NUMBER

In a translationally invariant superconducting wire with
chiral symmetry, the topological quantum number Q can be
extracted from the Bogoliubov-de Gennes Hamiltonian as
a winding number in the one-dimensional Brillouin zone.7

In order to make contact with transport measurements, we
describe here an alternative scattering formulation for a finite
disordered wire (adapted from Ref. 10), that expresses Q as
the trace of the Andreev reflection matrix from one of the ends
of the wire. The electrical conductance G can then be related
to Q by an inequality.
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FIG. 1. Superconducting wire (S) connected at both ends to a
normal metal reservoir (N). The current I flowing from the normal
metal (at voltage V ) into the grounded superconductor gives the
conductance G = I/V of the NS junction. The wire is assumed to
be sufficiently long that there is negligible transmission from one
end to the other. Chiral symmetry then produces a topologically
protected quantum number Q ∈ Z. Both G = (2e2/h)Tr rher

†
he and

Q = Tr rhe are determined by the Andreev reflection matrix rhe of
the junction. While the NS junctions at the two ends of the wire can
have independently varying conductances G and G′, the topological
quantum numbers are related by Q′ = −Q.

A. Trace formula for the topological quantum number

The scattering problem is defined by connecting the N -
mode superconducting wire (S) to a normal metal reservoir
(N). The 2N × 2N reflection matrix r(E) relates the incident
and reflected amplitudes of electron (e) and hole (h) excitations
at energy E. It has a block structure of N × N submatrices,

r =
(

ree reh

rhe rhh

)
, τx =

(
0 1
1 0

)
, (3)

where we have also introduced a Pauli matrix τx acting on the
electron-hole degree of freedom.

We assume that both time-reversal symmetry and spin-
rotation symmetry are broken, respectively, by a magnetic field
and spin-orbit coupling. Electron-hole symmetry and chiral
symmetry are expressed by

τxr(−E)τx =
{

r∗(E) (e-h symmetry),

r†(E) (chiral symmetry).
(4)

Taken together, the two symmetries imply that r(E) = rT (E)
is a symmetric matrix. For spinless particles, this would be a
time-reversal symmetry, but the true time-reversal symmetry
also involves a spin flip.

In what follows we consider the reflection matrix at the
Fermi level (E = 0). The symmetry relations (4) then take the
form

ree = r∗
hh = rT

ee, rhe = r∗
eh = r

†
he. (5)

These symmetries place the wire in universality class BDI,
with topological quantum number determined10 by the sign
of the eigenvalues of the Hermitian matrix τxr . This can be
written as a trace if we assume that the wire is sufficiently
long that we can neglect transmission of quasiparticles from
one end to the other. The reflection matrix is then unitary,
rr† = 1. The matrix product τxr is both unitary and Hermitian,
with eigenvalues ±1. The topological quantum number Q ∈
{−N, . . . ,−1,0,1, . . . ,N} is given by the trace

Q = 1
2 Tr τxr = Tr rhe. (6)

All of this is for one end of the wire. The other end has
its own reflection matrix r ′, with topological quantum number
Q′ = 1

2 Tr τxr
′. Unitarity with chiral symmetry relates r and r ′

via the transmission matrix t ,

S =
(

r t

tT r ′

)
, (τxS)2 = 1,

⇒ (τxr)(τxt) = −(τxt)(τxr
′). (7)

If we allow for an infinitesimally small transmission for all
modes through the wire, so that t is invertible, this implies that
Tr τxr = −Tr τxr

′, hence Q′ = −Q.
The sign of the topological quantum number at the two ends

of the wire can be interchanged by a change of basis of the
scattering matrix, S �→ τzSτz, so the sign of Q by itself has no
physical significance—only relative signs matter.

B. Conductance inequality

In the most general case, the Andreev reflection eigenvalues
Rn ∈ [0,1] are defined as the eigenvalues of the Hermitian
matrix product rher

†
he. Because of chiral symmetry, the matrix

rhe is itself Hermitian, with eigenvalues ρn ∈ [−1,1] and Rn =
ρ2

n . These numbers determine the linear response conductance
G of the NS junction,

G = G0

N∑
n=1

Rn, G0 = 2e2/h. (8)

The factor of 2 in the definition of the conductance quantum
G0 is not due to spin (which is included in the sum over n), but
accounts for the fact that charge is added to the superconductor
as charge-2e Cooper pairs.

The Andreev reflection eigenvalues Rn different from 0,1
are twofold degenerate (Béri degeneracy).14,15 The eigenvalues
ρn are not degenerate, but another pairwise relation applies.
Consider an eigenvalue ρ of rhe with eigenvector ψ . It follows
from the symmetry relations (5), together with unitarity of
r , that rherhhψ

∗ = (rehreeψ)∗ = −(reerheψ)∗ = −ρ rhhψ
∗. So

−ρ is also an eigenvalue of rhe, unless rhhψ
∗ = 0. This is not

possible, again because of unitarity, if |ρ| < 1. If also ρ 	= 0,
the pair ρ, −ρ is distinct.

So we see that ρn different from 0,±1 come in pairs ±ρ

of opposite sign. They cannot contribute to the topological
quantum number Q = ∑

n ρn, only ρn equal to ±1 can
contribute (because |Q| of them can come unpaired). Since
each |ρn| = 1 contributes an amount G0 to the conductance,
we arrive at the lower bound

G/G0 � |Q|. (9)

The upper bound for G/G0 is trivially N , the number of
modes, but this can be sharpened if N − |Q| is an odd integer.
There must then be an unpaired ρn = 0, leading to the upper
bound

G/G0 � min(N,N + (−1)N−|Q|). (10)

For N = 1 these inequalities imply G/G0 = |Q|, but for N >

1 there is no one-to-one relationship between G and |Q|.
Because the sign of Q does not enter, the same inequalities

constrain the conductances G and G′ of the NS junctions at
both ends of the wire (since Q′ = −Q). Otherwise, the two
conductances can vary independently.

Both inequalities (9) and (10), derived here for symmetry
class BDI with |Q| = 0,1,2, . . . ,N , apply as well to symmetry
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class D with Q = 0,1, essentially because the Béri degeneracy
is operative there as well.15

III. CONDUCTANCE DISTRIBUTION FOR CHAOTIC
SCATTERING

A statistical relation between conductance and topological
quantum number can be obtained if we consider an ensemble
of disordered wires and ask for the Q dependence of the
probability distribution P (G). For chaotic scattering at the
NS junction we can calculate the distribution from a circular
ensemble of random-matrix theory. Such a calculation was
performed in Ref. 11 for a superconductor without chiral
symmetry (symmetry class D). Here we follow that approach
in the chiral orthogonal ensemble of symmetry class BDI.

The assumption of chaotic scattering requires a separation
of time scales τdwell 
 τmixing, meaning that a quasiparticle
dwells long enough at the NS interface for all available
scattering channels to be fully mixed. Conceptually, this can
be realized by confining the particles near the NS interface
in a ballistic quantum dot.11 In the next section we consider
a microscopic model of a disordered NS interface with
comparable dwell time and mixing time, but as we will see,
the conductance distributions from the circular ensemble are
still quite representative.

A. Distribution of Andreev reflection eigenvalues

We start from the polar decomposition of the reflection
matrix in class BDI,

r =
(

U 0
0 U ∗

) (
� �

�T �

)(
UT 0
0 U †

)
. (11)

The matrix U is an N × N unitary matrix and the N × N

matrices �,� are defined by

� =
M⊕

m=1

(
cos αm 0

0 cos αm

)
⊕ ∅|Q| ⊕ 1ζ , (12a)

� = ±
M⊕

m=1

(
0 −i sin αm

i sin αm 0

)
⊕ 1|Q| ⊕ ∅ζ . (12b)

The ± sign refers to the sign of Q. (For Q = 0 the sign can
be chosen arbitrarily.) The symbols 1n,∅n denote, respectively,
an n × n unit matrix or null matrix. We have defined ζ = 0
if the difference N − |Q| is even and ζ = 1 if N − |Q| is
odd. The M = (N − |Q| − ζ )/2 angles αm are in the interval
−π/2 < αr � π/2.

The Andreev reflection matrix rhe = (U�U †)T has
eigenvalues ρn = sin αn (n = 1,2, . . . ,M), ρn = − sin αn

(n = M + 1,M + 2, . . . ,2M), ρn = 1 (n = 2M + 1,2M +
2, . . . ,2M + |Q|), and additionally ρN = 0 if N − |Q| is odd,
all of which is consistent with the general considerations of
Sec. II B.

From the polar decomposition we obtain the invariant
(Haar) measure μ(r) = r†dr that defines the uniform prob-
ability distribution in the circular ensemble, P (r)dμ(r) =
dμ(r). Upon integration over the independent degrees of
freedom in the unitary matrix U we obtain the distribution
P (α1,α2, . . . ,αM ) of the angular variables. A change of
variables then gives the distribution P (R1,R2, . . . ,RM ) of
the twofold degenerate Andreev reflection eigenvalues Rn =
sin2 αn. Details of this calculation are given in Appendix A.
The result is

P ({Rn}) ∝
M∏

m=1

Rm
ζ−1/2(1 − Rm)|Q|

M∏
i<j=1

(Ri − Rj )2. (13)

The M twofold degenerate eigenvalues repel each other
quadratically; furthermore, they are repelled with exponent |Q|
from the |Q| eigenvalues pinned at unity. While the probability
of finding a small reflection eigenvalue is enhanced for N −
|Q| even (ζ = 0), the eigenvalue RN = 0 pinned at zero for
N − |Q| odd (ζ = 1) produces a square root repulsion.

B. Dependence of conductance distribution on the
topological quantum number

Integration over the probability distribution (13) of the
Andreev reflection eigenvalues gives the distribution P (g) of
the dimensionless electrical conductance

g ≡ G/G0 = |Q| + 2
M∑

m=1

Rm. (14)

The first term |Q| is the quantized contribution from the
topologically protected eigenvalues, and the factor of two in
front of the sum accounts for the Béri degeneracy of the M

eigenvalues without topological protection.
The conductance distribution is only nonzero in the interval

|Q| � g � min(N,N + (−1)N−|Q|) (15)

(see Sec. II B). It is a trivial δ function, P (g) = δ(g − |Q|),
when |Q| = N,N − 1. Explicit results for small values of
N are

N = 1 : P (g) = δ(g − |Q|), (16a)

N = 2 : P (g) =
{
δ(g − |Q|) if |Q| = 1,2,

(8g)−1/2 if |Q| = 0,
(16b)

N = 3 : P (g) =

⎧⎪⎨
⎪⎩

δ(g − |Q|) if |Q| = 2,3,

3
16

√
2(3 − g)(g − 1)−1/2θ (g − 1) if |Q| = 1,

3
8 (2g)1/2θ (2 − g) if |Q| = 0,

(16c)
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N = 4 : P (g) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ(g − |Q|) if |Q| = 3,4,

15
128

√
2(4 − g)2(g − 2)−1/2θ (g − 2) if |Q| = 2,

15
32

√
2(3 − g)(g − 1)1/2θ (g − 1)θ (3 − g) if |Q| = 1,

45
512πg2 − 45

128

[√
2(4 − g)

√
g − 2 + g2 arctan

√
1
2 (g − 2)

]
θ (g − 2) if |Q| = 0.

(16d)

The step function θ (x) (equal to 0 for x < 0 and 1 for x > 0) is used to indicate the nontrivial upper and lower bounds of the
conductance. (The trivial bounds 0 � g � N are not indicated explicitly.) The distributions for N = 3,4 are plotted in Fig. 2.

The first two moments of the conductance can be calculated
in closed form for any value of N,Q, using known formulas for
Selberg integrals.16 (Alternatively, one can directly integrate
over the BDI circular ensemble, see Appendix B.) We find

〈G/G0〉 = N (N − 1) + Q2

2N − 1
, (17)

Var (G/G0) = 4(N2 − Q2)(N2 − Q2 − 2N + 1)

(2N − 1)2(2N + 1)(2N − 3)
. (18)

For N → ∞ at fixed |Q|, this reduces to

〈G/G0〉 = N

2
− 1

4
+ Q2 − 1/4

2N
+ O(N−2), (19)

Var (G/G0) = 1

4
− Q2 − 1/4

2N2
+ O(N−3). (20)

The reduction of the average conductance below the
classical value NG0/2 = Ne2/h is a weak localization effect,
produced by the chiral symmetry in class BDI. (It is absent
for the class-D circular ensemble.1,11) The variance of the

FIG. 2. (Color online) Probability distribution of the conductance
for chaotic scattering in symmetry class BDI. The distributions are
plotted from Eq. (16) for N = 3,4 modes and different values of
the topological quantum number Q. Thick vertical lines indicate a
δ-function distribution.

conductance in the large-N limit, Var G → (e2/h)2, is twice
as large as without chiral symmetry.

A fundamental effect of chiral symmetry is that the Q

dependence of moments of the conductance is perturbative
in 1/N . In the class-D circular ensemble, in contrast, the
pth moment of the conductance is strictly independent of
the topological quantum number for N > p, so topological
signatures cannot be studied in perturbation theory.11

IV. RESULTS FOR A MICROSCOPIC MODEL

We study a model Hamiltonian of a disordered
two-dimensional semiconductor nanowire with induced
superconductivity,12,13

H =
( | p|2

2meff
+ U (r) − μ

)
τz + VZσxτz

+ αso

h̄
(pxσyτz − pyσx) + �0σyτy. (21)

This Bogoliubov-de Gennes Hamiltonian contains the single-
particle kinetic energy (p2

x + p2
y)/2meff , electrostatic disorder

potential U (x,y), chemical potential μ, Zeeman energy VZ,
Rashba spin-orbit coupling constant αso, and s-wave pairing
potential �0. The Pauli matrices σi , τi act on the spin
and electron-hole degree of freedom, respectively. The two-
dimensional wire has width W in the y direction and extends
along the x direction (parallel to the Zeeman field). We
define the spin-orbit coupling length lso = h̄2(meffαso)−1 and
confinement energy EW = h̄2(2meffW

2)−1.

A. Mechanisms for chiral symmetry breaking

Electron-hole symmetry and chiral symmetry,

τxHτx =
{−H ∗ (e-h symmetry),

−H (chiral symmetry),
(22)

together require that H is real. While the electron-hole
symmetry is an exact symmetry of the Hamiltonian (21),
the chiral symmetry is broken by the spin-orbit term pyσx

associated with transverse motion.7

To quantify the stability of multiple zero-energy states,
we follow Ref. 17 and make a unitary transformation H �→
U†HU ≡ H ′ with U = exp(iσxτz y/ lso). The transformed
Hamiltonian,

H ′ =
( | p|2

2meff
+ U − αso

2lso
− μ

)
τz + VZσxτz + �0σyτy

+ αso

h̄
px[cos(2y/lso)σyτz + sin(2y/lso)σz], (23)
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no longer contains py and breaks chiral symmetry through the
final term ∝pxσz. For W � lso this term produces a splitting
δE of pairs of zero-energy states of order (W/lso)Egap, with
Egap ∝ αso the induced superconducting gap. This simple
estimate is an upper bound on the splitting; even smaller
splittings have been found in Refs. 18–20. We typically find in
our numerical simulations that δE � 0.05 Egap for W � lso.

There are other methods to break chiral symmetry. An
externally controllable method is to tilt the magnetic field
so that it acquires a nonzero component in the y direction,
in the plane of the substrate but perpendicular to the axis of
the nanowire.21 The orbital effect of a magnetic field (Lorentz
force) also breaks chiral symmetry, but this is expected to be
small compared to the Zeeman effect on the spin. Subband
mixing by a disorder potential or a position-dependent pairing
term preserve chiral symmetry. This leaves spin-orbit coupling
of transverse momentum as the most significant intrinsic
mechanism for chiral symmetry breaking and we will focus
on it in the simulations. We find a transition from symmetry
class D (Q ∈ Z2) to class BDI (Q ∈ Z) if W drops below lso.

All these considerations apply to noninteracting quasipar-
ticles. Interactions have the effect of restricting Q to Z8, so
chiral symmetry can stabilize at most eight zero modes at each
end of the wire.22,23 For N � 8 we expect the universal class
BDI results (in particular the conductance quantization) to be
unaffected by interactions.

B. Class BDI phase diagram

For an infinite clean wire with exact chiral symmetry,
Fig. 3 shows the phases with different topological quantum
number Q ∈ Z as a function of Zeeman energy and chemical
potential. (A similar phase diagram is given in Ref. 21.) The
phase boundaries are determined from the Hamiltonian (21) by
setting αpyσx ≡ 0, U ≡ 0, and demanding that the excitation
gap vanishes. This happens at

px = 0, py = pn = nπh̄/W, n = 1,2, . . . ,N,

V 2
Z = �2

0 + (
μ − p2

n

/
2meff

)2
, (24)

FIG. 3. (Color online) Topological phase diagram of the Hamilto-
nian (21) without disorder (U ≡ 0) and without any chiral symmetry
breaking (αpyσx ≡ 0, symmetry class BDI). The colored regions
give the value of the topological quantum number Q in the
superconducting state (�0 = 8EW ), while the black lines separate
regions with different number of propagating modes N in the normal
state (�0 = 0). The topological phase boundaries are independent of
Eso. The blue line is referred to in Fig. 4.

with N the number of propagating modes in the normal state
(�0 = 0).

If one follows the sequence of Q,N values with increasing
μ at constant VZ, one sees that |Q| remains equal to N �
1 for a range of chemical potentials (μ − π2EW )2 � V 2

Z .
For example, the sequence along the dashed blue line is
(|Q|,N ) = (1,1),(2,2),(3,3),(4,4), . . . . In view of the inequal-
ity (9), this implies a sequence of 2e2/h conductance steps.
The first quantized conductance plateau emerges when the
Zeeman energy exceeds the superconducting gap (VZ > �0).
Additional plateaus form at fields, for which the Zeeman
energy becomes larger than the subband splitting. More
specifically, the nth conductance plateau appears for V 2

Z =
�2

0 + E2
Wπ4(n2 − 1)2/4 (n = 1,2,3, . . . ).

C. Conductance quantization

To demonstrate the conductance quantization we attach a
clean normal-metal lead at x = 0 to the disordered super-
conducting wire. For x < 0 we thus set �0 = 0 and U =
0. The Andreev reflection matrix is calculated numerically
by discretizing the Hamiltonian on a square lattice (lattice
constant a = W/20). Disorder is realized by an electrostatic
potential U (x,y) that varies randomly from site to site for
x > 0, distributed uniformly in the interval (−U0,U0).

The results in Fig. 4 clearly show the expected behavior:
For W = lso/2 the conductance increases in a sequence of
quantized steps, insensitive to disorder, as long as |Q| ∈
{N,N − 1}. The quantization at |Q| � 2 is lost for W = 2lso

because of chiral symmetry breaking. The very first step
G = 2e2/h is common to both symmetry classes D and BDI,
so it persists.

D. Conductance distribution

For |Q| � N − 2 there is no conductance quantization, but
we can still search for the Q dependence in the statistical
distribution of the conductance. In Fig. 5 we show the
distribution function for N = 4, |Q| = 0,1,2, calculated by
averaging the results of the numerical simulation over disorder

FIG. 4. (Color online) Conductance of a disordered NS junction,
calculated numerically from the model Hamiltonian (21). The
chemical potential μ is increased at constant VZ = 90 EW , �0 = 8EW

(blue dashed line in the BDI phase diagram of Fig. 3), for three
different values of the spin-orbit coupling length lso. Each curve
is for a single disorder realization (of strength U0 = 180 EW ). The
conductance quantization at 2,3,4 × 2e2/h is lost by chiral symmetry
breaking as W becomes larger than lso.
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FIG. 5. (Color online) Blue histograms: probability distribution
of the conductance of the NS junction, calculated from the model
Hamiltonian (21) in an ensemble of disorder realizations. Each
panel has the same number of modes N = 4 in the normal region
and a different topological quantum number |Q| = 0,1,2 in the
superconductor. The black curves are the corresponding distributions
in the class BDI circular ensemble, given by Eq. (16d). Each panel
has the same value of lso = 2W and �0 = 8EW . The other energy
scales (in units of EW ) are as follows: Q = 0: μN = μS = 64, VZ =
14, U0 = 180; | Q| = 1: μN = 64, μS = 88, VZ = 14, U0 = 180;
| Q| = 2: μN = μS = 64, VZ = 34, U0 = 140.

realizations. The parameters used are listed in the caption. The
values of the Fermi energy (μN in the normal region and μS

in the superconducting region) were chosen in order to be far
from boundaries where Q or N changes.

We found that the conductance distributions depend sen-
sitively on the disorder strength, demonstrating that the
scattering at the NS interface is diffusive rather than chaotic.
This is as expected, since chaotic scattering requires a confined
geometry (for example, a quantum dot), to fully mix the
scattering channels. Still, by adjusting the disorder strength U0

a quite good agreement could be obtained with the distribution
from the class BDI circular ensemble calculated in Sec. III B.
Since this is a single fit parameter for an entire distribution
function, we find the agreement with the circular ensemble
quite satisfactory.

V. CONCLUSION

In conclusion, we have developed a scattering theory for
superconducting nanowires with chiral symmetry (symmetry
class BDI), relating the electrical conductance G to the
topological quantum number Q ∈ Z. In a closed system
|Q| counts the number of Majorana zero modes at the end
of the wire, but in our open system these end states have
broadened into a continuum with other nontopological states.
Still, the value of |Q| manifests itself in the conductance as
a quantization G = |Q| × 2e2/h over a range of chemical
potentials (see Fig. 4).

More generally, even when G is not quantized, the con-
ductance distribution is sensitive to the value of |Q|, as we
calculated in the circular ensemble of random-matrix theory
(see Fig. 5). Comparison with Ref. 11, where the conductance
distribution was calculated in the absence of chiral symmetry
(symmetry class D with Q ∈ Z2), shows that chiral symmetry
manifests itself even when |Q| � 1, even if there is not more
than a single Majorana zero mode.

The chiral symmetry is an approximate symmetry (unlike
the fundamental electron-hole symmetry), requiring in partic-
ular a wire width W below the spin-orbit coupling length lso.
Our model calculations in Fig. 4 show that chiral symmetry is
lost for W � 2lso and well preserved for W � lso/2. Existing
experiments4–6 on InAs and InSb nanowires typically have
lso � 200 nm and W � 100 nm. These are therefore in the
chiral regime and can support more than a single zero mode
at each end, once the Zeeman energy becomes comparable to
the subband spacing.
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APPENDIX A: CALCULATION OF THE ANDREEV
REFLECTION EIGENVALUE DISTRIBUTION IN THE BDI

CIRCULAR ENSEMBLE

In this Appendix we derive the probability distribution
P ({Rm}) of the Béri degenerate Andreev reflection eigenvalues
R1, . . . ,RM in the circular ensemble of symmetry class BDI
(circular chiral orthogonal ensemble). The calculation follows
the standard procedure of random-matrix theory,24 and is
technically similar to the calculation for symmetry class D
(circular real ensemble) presented in Ref. 11.

The probability distribution P ({Rm}) is determined by
the invariant (Haar) measure dμ(r) = r†dr = δr , which for
a given topological quantum number Q characterizes the
uniform distribution of scattering matrices in the circular
ensemble subject to the symmetry constraints of Eq. (5).
Since any scattering matrix in the ensemble can be decom-
posed according to Eq. (11) (i.e., parameterized in terms
of the angles αm) we can transform the invariant measure
into dμ(r) = J

∏
i dpi

∏
m dαm. pi denotes the degrees of
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freedom of the matrix of eigenvectors U and J is the Jacobian
of the transformation. From this expression the distribution
of the angles αm follows via integration over pi . Up to a
normalization constant we have

P ({αm}) ∝
∫

J
∏

i

dpi . (A1)

The polar decomposition in Eq. (11) is not unique. As in
Ref. 11 the redundant degrees of freedom can be removed
by restricting the independent parameters pi in the matrix
of eigenvectors U . The total number of degrees of freedom
furthermore depends on N as well as on Q. This is best seen
if one considers the reflection matrix r̃ in a basis where it is a
real orthogonal and symmetric matrix, of the form

r̃ = O

(
1N+Q 0

0 −1N−Q

)
OT , (A2)

with O a 2N × 2N real orthogonal matrix. In this basis
the topological quantum number is given by Q = 1

2 Tr r̃ .
The upper-left and lower-right blocks do not change un-
der an additional orthogonal transformation O ′

N+Q ⊕ O ′′
N−Q.

Group division readily gives the total number of degrees of
freedom: dim O(2N ) − dim O(N + Q) − dim O(N − Q) =
N2 − Q2. Since there are M angular parameters αm, there
must be N2 − Q2 − M independent degrees of freedom pi in
the matrix of eigenvectors U .

In order to obtain the probability distribution from Eq. (A1)
we need the Jacobian J . It can be determined from the metric
tensor gμν , which can be extracted from the trace Tr δrδr†,
when it is expressed in terms of the infinitesimals dαm and dpi

(collectively denoted as dxμ)

Tr δrδr† =
∑
μ, ν

gμνdxμdxν . (A3)

In view of the polar decomposition (11) one has

W †drW ∗ = δWL + dL + LδWT , (A4)

where we abbreviated

W =
(

U 0
0 U ∗

)
, L =

(
� �

�T �

)
. (A5)

Unitarity ensures 0 = d(U †U ) = dU †U + U †dU ⇒ δU † =
−δU . Substitution of Eqs. (A4) and (A5) into Tr δrδr† =
Tr drdr† = Tr (W †drW ∗WT dr†W ) gives

Tr δrδr† = Tr (dLdL† − 2LδWT L†δW − 2δW 2) . (A6)

From the block structure of W and L we find Tr δW 2 =
2 Tr δU 2 and

Tr (LδWT L†δW ) = 2 Tr (�δU�δUT − �δU�δU ), (A7)

where we have used �T = �∗ = � and �† = �.
It is convenient to express Tr δrδr† in terms of the form

Tr AA† = ∑
ij |Aij |2. Using �� + �� = 1N we find

Tr δrδr† = Tr dLdL† + 2Tr (�δUT + δU�)(�δUT + δU�)†

+ 2Tr (�δU − δU�)(�δU − δU�)†

≡ T1 + T2 + T3. (A8)

The first trace simply evaluates to

T1 = 2
N∑

ij=1

(|d�ij |2 + |d�ij |2) = 4
M∑

m=1

(dαm)2 . (A9)

The remaining two traces T2 and T3 need to be calculated
using the block structure of � and � in Eq. (12). We work
out the calculation for Q = 0, N even (⇒ ζ = 0). The two
matrices � and � are in this case fully described by M = N/2
blocks of 2 × 2 matrices. The two traces evaluate to

1

4
T2 =

M∑
k=1

2 cos2 αk{|δU2k,2k|2 + |δU2k−1,2k−1|2 + 2[Im (δU2k−1,2k)]2}

+
M∑

k<l=1

{
(cos2 αk + cos2 αl)(|δU2k,2l|2 + |δU2k,2l−1|2 + |δU2k−1,2l |2 + |δU2k−1,2l−1|2)

− 2 cos αl cos αk Re
(
δU 2

2l,2k + δU 2
2l,2k−1 + δU 2

2l−1,2k + δU 2
2l−1,2k−1

)}
, (A10)

1

4
T3 =

M∑
k=1

sin2 αk{|δU2k,2k − δU2k−1,2k−1|2 + 4[Im (δU2k−1,2k)]2}

+
M∑

k<l=1

{(sin2 αk + sin2 αl)(|δU2k,2l|2 + |δU2k,2l−1|2 + |δU2k−1,2l |2 + |δU2k−1,2l−1|2)

+ 4 sin αk sin αl Re (δU2k,2l−1δU
∗
2k−1,2l − δU2k,2lδU

∗
2k−1,2l−1)}. (A11)

Like � and � the elements of the matrix δU can be grouped into separate 2 × 2 blocks, denoted by the block indices
k,l = 1, . . . ,M . We first consider the block-off-diagonal part for which we can choose as independent parameters

δU2k,2l , δU2k,2l−1, δU2k−1,2l , δU2k−1,2l−1,

with 1 � k < l � M . The real and imaginary parts, denoted by δUR,δU I, produce a total of 4M(M − 1) independent parameters.
Note that δU † = −δU immediately implies δUR

2k,2l = −δUR
2l,2k , δU I

2k,2l = δU I
2l,2k , and so on. For given values of k and l the
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contribution to Tr δrδr† has the form

a
[(

δUR
2k,2l

)2 + (
δUR

2k,2l−1

)2 + (
δUR

2k−1,2l

)2 + (
δUR

2k−1,2l−1

)2] + b
[(

δU I
2k,2l

)2 + (
δU I

2k,2l−1

)2 + (
δU I

2k−1,2l

)2 + (
δU I

2k−1,2l−1

)2]
+ 2c

[
δUR

2k,2l−1δU
R
2k−1,2l + δU I

2k,2l−1δU
I
2k−1,2l − δUR

2k,2lδU
R
2k−1,2l−1 − δU I

2k,2lδU
I
2k−1,2l−1

]
,

where we abbreviated a = 2(1 − cos αk cos αl), b = 2(1 + cos αk cos αl), and c = 2 sin αk sin αl .

The contribution to the metric tensor is a block matrix⎛
⎜⎝

a −c 0 0
−c a 0 0
0 0 a c

0 0 c a

⎞
⎟⎠ ⊕

⎛
⎜⎝

b −c 0 0
−c b 0 0
0 0 b c

0 0 c b

⎞
⎟⎠ ,

where the first and the second block correspond to the real
and imaginary parts, respectively. The determinant of this
block matrix is 256 (sin2 αk − sin2 αl)4. This gives us the
contribution to the Jacobian from the off-diagonal matrix
elements

Joff−diagonal =
M∏

k<l=1

(sin2 αk − sin2 αl)
2. (A12)

Next we consider the diagonal 2 × 2 blocks. Anti-
Hermiticity of δU implies δUR

ii = 0 (i = 1, . . . ,N ). We choose
the 3M independent parameters

δU I
2k,2k, δU I

2k−1,2k−1, δU I
2k−1,2k .

The contribution to Tr δrδr† for a given value k has the form

v
[(

δU I
2k,2k

)2 + (
δU I

2k−1,2k−1

)2]
− 2wδU I

2k,2kδU
I
2k−1,2k−1 + 4

(
δU I

2k−1,2k

)2
,

where v = 1 + cos2 αk and w = sin2 αk . Note that δU I
2k−1,2k

is fully decoupled. The contribution to the metric tensor is(
v −w

−w v

)

with a determinant of 4 cos2 αk . This leads to a contribution to
the Jacobian from the diagonal matrix elements

Jdiagonal =
M∏

k=1

(1 − sin2 αk) . (A13)

The total number of independent parameters that we
have accounted for is 4M2 = N2 (including the M angular
parameters αm). This is exactly the number we expect for N

even and Q = 0. Collecting all the terms that contribute to the

Jacobian in Eq. (A1), we obtain the probability distribution

P (αk) ∝
M∏

k=1

(1 − sin2 αk)
M∏

k<l=1

(sin2 αk − sin2 αl)
2. (A14)

Integration over the N2 − |Q|2 − M ancillary degrees of
freedom of the matrix of eigenvectors U only gives rise to
an overall constant. A transformation of variables from αm to
Rm = sin2 αm gives the distribution (13) of the twofold degen-
erate Andreev reflection values in the case Q = 0, N even (ζ =
0). The cases Q 	= 0 and/or N odd are worked out similarly.

APPENDIX B: AVERAGE CONDUCTANCE IN THE
BDI CIRCULAR ENSEMBLE

In the circular ensemble of Sec. III B the 2N × 2N

reflection matrix r is uniformly distributed in the unitary group,
subject to the restrictions of electron-hole symmetry and chiral
symmetry. The average conductance can be calculated directly
by integration over the unitary group. We give this calculation
here, as a check on the result (17) derived by going through
the distribution of Andreev reflection eigenvalues.

Unitarity (rr† = 1) implies that the expression (1) for the
conductance can be written equivalently as

G = 1
4G0 Tr (1 + rher

†
he + rehr

†
eh − reer

†
ee − rhhr

†
hh)

= 1
4G0 Tr (1 − τzrτzr

†). (B1)

Electron-hole symmetry (r = τxr
∗τx) and chiral symmetry

(r = rT ) constrain r to the form

r = −ieiτxπ/4ODQOT eiτxπ/4. (B2)

The matrix O is real orthogonal (OOT = 1). The diagonal
matrix DQ has entries ±1 on the diagonal with TrDQ = 2Q,
consistent with Eq. (6). Substitution into Eq. (B1) gives

G = 1
4G0 Tr (1 + τyODQOT τyODQOT ). (B3)

In the circular ensemble the matrix O is uniformly
distributed with respect to the Haar measure for 2N × 2N

orthogonal matrices. The average of a product of four
orthogonal matrices equals25

〈OαaOβbOγcOδd〉 = 2N + 1

2N (2N − 1)(2N + 2)
(δαβδabδγ δδcd + δαγ δacδβδδbd + δαδδadδβγ δbc)

− 1

2N (2N − 1)(2N + 2)
(δαβδacδγ δδbd + δαβδadδγ δδbc + δαγ δabδβδδcd + δαγ δadδβδδbc

+ δαδδabδβγ δcd + δαδδacδβγ δbd ). (B4)

The average of Eq. (B1) becomes

〈G〉 = 1

4
G0

(
2N + 4Q2 − 2N

2N − 1

)
, (B5)

which is just Eq. (17).
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