3,395 research outputs found

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Full text link
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a kk-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication in Phys. Rev. Letter

    Bifurcation in electrostatic resistive drift wave turbulence

    Full text link
    The Hasegawa-Wakatani equations, coupling plasma density and electrostatic potential through an approximation to the physics of parallel electron motions, are a simple model that describes resistive drift wave turbulence. We present numerical analyses of bifurcation phenomena in the model that provide new insights into the interactions between turbulence and zonal flows in the tokamak plasma edge region. The simulation results show a regime where, after an initial transient, drift wave turbulence is suppressed through zonal flow generation. As a parameter controlling the strength of the turbulence is tuned, this zonal flow dominated state is rapidly destroyed and a turbulence-dominated state re-emerges. The transition is explained in terms of the Kelvin-Helmholtz stability of zonal flows. This is the first observation of an upshift of turbulence onset in the resistive drift wave system, which is analogous to the well-known Dimits shift in turbulence driven by ion temperature gradients.Comment: 21 pages, 11 figure

    Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats

    Get PDF
    Background: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. Methods: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using 99mTc-D, L-hexamethylpropyleneamine oxime (99mTc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T2-weighted magnetic resonance imaging. Results: Glucose administration had no effect on the severity of ischaemia when assessed by either 99mTc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. Conclusions: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear

    Improved WWW Cache Updating For Rapidly Changing Objects

    Get PDF

    Semicrompressible Ocean Thermodynamics and Boussinesq Energy Conservation

    Get PDF
    Equations more accurate than the Boussinesq set that still filter out sound were recently introduced. While these equations were shown to have a consistent potential energy, their thermodynamical behavior and associated implications were not fully analyzed. These shortcomings are remedied in the present note that argues both sets are fully consistent from a thermodynamic perspective. It is further argued that both sets remain computationally competitive with the Boussinesq set

    Submesoscale generation by boundaries

    Get PDF
    An important dynamical question involves how oceanic balanced flows lose energy. Recent numerical and analytical studies suggest topography catalyzes energy exchanges between balanced flows and a variety of unbalanced phenomena, which presumably leads to dissipation. We here develop a general theory of inviscid balanced flow interactions with walls that predicts submesoscale and unbalanced flow generation. Comparison with primitive equation-based numerical experiments supports the basic tenets of the theory

    A comparison of incompressible limits for resistive plasmas

    Full text link
    The constraint of incompressibility is often used to simplify the magnetohydrodynamic (MHD) description of linearized plasma dynamics because it does not affect the ideal MHD marginal stability point. In this paper two methods for introducing incompressibility are compared in a cylindrical plasma model: In the first method, the limit γ\gamma \to \infty is taken, where γ\gamma is the ratio of specific heats; in the second, an anisotropic mass tensor ρ\mathbf{\rho} is used, with the component parallel to the magnetic field taken to vanish, ρ0\rho_{\parallel} \to 0. Use of resistive MHD reveals the nature of these two limits because the Alfv\'en and slow magnetosonic continua of ideal MHD are converted to point spectra and moved into the complex plane. Both limits profoundly change the slow-magnetosonic spectrum, but only the second limit faithfully reproduces the resistive Alfv\'en spectrum and its wavemodes. In ideal MHD, the slow magnetosonic continuum degenerates to the Alfv\'en continuum in the first method, while it is moved to infinity by the second. The degeneracy in the first is broken by finite resistivity. For numerical and semi-analytical study of these models, we choose plasma equilibria which cast light on puzzling aspects of results found in earlier literature.Comment: 14 pages, 10 figure

    Electronic Correlations in Oligo-acene and -thiophene Organic Molecular Crystals

    Get PDF
    From first principles calculations we determine the Coulomb interaction between two holes on oligo-acene and -thiophene molecules in a crystal, as a function of the oligomer length. The relaxation of the molecular geometry in the presence of holes is found to be small. In contrast, the electronic polarization of the molecules that surround the charged oligomer, reduces the bare Coulomb repulsion between the holes by approximately a factor of two. In all cases the effective hole-hole repulsion is much larger than the calculated valence bandwidth, which implies that at high doping levels the properties of these organic semiconductors are determined by electron-electron correlations.Comment: 5 pages, 3 figure

    Genes for cooperation are not more likely to be carried by plasmids

    Get PDF
    Cooperation is prevalent across bacteria, but risks being exploited by non-cooperative cheats. Horizontal gene transfer, particularly via plasmids, has been suggested as a mechanism to stabilize cooperation. A key prediction of this hypothesis is that genes which are more likely to be transferred, such as those on plasmids, should be more likely to code for cooperative traits. Testing this prediction requires identifying all genes for cooperation in bacterial genomes. However, previous studies used a method which likely misses some of these genes for cooperation. To solve this, we used a new genomics tool, SOCfinder, which uses three distinct modules to identify all kinds of genes for cooperation. We compared where these genes were located across 4648 genomes from 146 bacterial species. In contrast to the prediction of the hypothesis, we found no evidence that plasmid genes are more likely to code for cooperative traits. Instead, we found the opposite—that genes for cooperation were more likely to be carried on chromosomes. Overall, the vast majority of genes for cooperation are not located on plasmids, suggesting that the more general mechanism of kin selection is sufficient to explain the prevalence of cooperation across bacteria

    Analysing and modelling train driver performance

    Get PDF
    Arguments for the importance of contextual factors in understanding human performance have been made extremely persuasive in the context of the process control industries. This paper puts these arguments into the context of the train driving task, drawing on an extensive analysis of driver performance with the Automatic Warning System (AWS). The paper summarises a number of constructs from applied psychological research which are thought to be important in understanding train driver performance. A “Situational Model” is offered as a framework for investigating driver performance. The model emphasises the importance of understanding the state of driver cognition at a specific time (“Now”) in a specific situation and a specific context
    corecore