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Abstract: Equations more accurate than the Boussinesq set that still filter out sound were recently
introduced. While these equations were shown to have a consistent potential energy, their
thermodynamical behavior and associated implications were not fully analyzed. These shortcomings
are remedied in the present note that argues both sets are fully consistent from a thermodynamic
perspective. It is further argued that both sets remain computationally competitive with the
Boussinesq set.
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1. Introduction

Dewar et al. [1] recently developed two sets of ocean dynamical equations that include some
degree of compressibility and exclude sound waves. They were argued to be simultaneously more
accurate than the Boussinesq equations and computationally competitive with them. These were
referred to as the Type I and Type II Semicompressible equations.

In subsequent communications with Prof. R. Klein, he correctly pointed out that the
thermodynamic consistency of these equations had not yet been demonstrated. Thermodynamic
consistency in this context means that total energy is conserved and that an entropy variable exists
for the system that obeys the second thermodynamic law. This remark was made in comparison to
pseudoincompressible equations derived in [2] for a general equation of state in which a much more
thorough thermodynamic analysis had been undertaken. The purpose of this short communication is
to analyze similar characteristics of both types of the semicompressible equations.

2. The Semicompressible Equations

As discussed in [1], the Type I equations are

ρ∗( ∂
∂t u + u · ∇u + 2Ω× u) = −∇p− [ρ∗ − ρr(z) +

pρr
c2

s ρ∗
]gk +∇ · ρ∗νvisc∇u

∂
∂t ρ∗ +∇ · (ρ∗u) = 0

ρ∗ = ρ(SA, Θ, P∗)
(1a)

d
dt Θ = Θo

d
dt SA = So

A
(1b)

where density, ρ∗, is evaluated using Conservative Temperature, Θ, Absolute Salinity, SA and the
hydrostatic pressure, P∗, determined from the reference density profile, ρr (at most a function of z)
according to
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∂

∂z
P∗ = −ρrg (2)

The quantity νvisc is viscosity and ν∗ = 1/ρ∗.
De Szoeke and Samelson [3] have shown that the hydrostatic Boussinesq equations are equivalent

to the compressible hydrostatic Navier-Stokes equations written in pressure coordinates. Equation (1a)
improves upon the classic hydrostatic balance in the hydrostatic limit through the presence of the
sound speed. The density approximation it represents is a more accurate approximation of true density
than ρ∗, density evaluated at the hydrostatic pressure. Equation (1) is also more flexible in that they
can be used in non-hydrostatic settings.

The notation Xo in Equation (1) denotes the non-advective contributions to X. Absolute Salinity,
being a purely conserved quantity (ignoring chemistry, see [4]), the form is clear

So
A = −ν∇ · FS (3)

where FS is the diffusive flux of Absolute Salinity. We purposely leave the form for Θo unspecified, as
part of the present exercise is to determine it. Other notation is standard.

The equations in Equation (1) satisfy the energy equation

∂

∂t
(ρ∗(K + h+I )) +∇ · (u(ρ

∗(K + h+I )) + pu) = pR +∇ · ρ∗νvisc∇K− ρ∗ε (4)

with potential energy played by the quantity

h+I = −
∫ P∗

Po

ρ− ρr

ρρr
dP =

∫ P∗

Po

bI
gρr

dP (5)

The quantity ε = νvisc|∇u|2 is the viscous dissipation of kinetic energy, bI is the Type I buoyancy,
the quantity R

R = − ∂

∂Θ
ν∗

d
dt

Θ− ∂

∂SA
ν∗

d
dt

SA (6)

denotes diffusive terms and Equation (1b) demonstrates the presence of compressibility in
these equations.

The Type II equations are

ρI I(
∂
∂t u + u · ∇u + 2Ω× u) = −∇p− (ρ∗ − ρI I)gk− p

c2
sI I

gk +∇ · ρI Iνvisc∇u
∂
∂t ρI I +∇ · (ρI Iu) = ∇ · (ρI Iu) = 0

ρ∗ = ρ(SA, Θ, P∗)
(7a)

d
dt Θ = Θo

d
dt SA = So

A
(7b)

where

ρI I(z) = ρI I(0)e
−
∫ z

o
g

c2
sI I

dz
(8)

is either a chosen reference density profile yielding the sound speed profile c2
sI I

or a profile constructed
from a chosen sound speed profile, c2

sI I
. In either case, density, ρI I , is a function of depth only and the

hydrostatic pressure is computed from it

∂

∂z
P∗ = −ρI I g (9)
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Compressibility appears in these equations in Equation (7b) where the time independence of ρI I
has been recognized. The Type II equations satisfy the energy constraint

∂

∂t
(ρI I(K + h+I I)) +∇ · (uρI I(K + h+I I) + pu) = ∇ · ρI Iνvisc∇K− ρI Iε (10)

where the role of potential energy is now played by

h+I I = −
∫ P∗

Po

ρ− ρI I

ρ2
I I

dP =
∫ P∗

Po

bI I
gρI I

dP (11)

The quantity bI I is the Type II buoyancy. The advantages and disadvantages of these equations
are discussed in [1]. Extracting Equations (1) and (7) from the full Navier–Stokes equations is akin
to substituting the Boussinesq density for the full density in most places, and retaining a reference
density profile where needed for potential energy consistency.

3. Semicompressible Thermodynamics

We now consider how to augment (1) and (7) with a consistent thermodynamic behavior. The First
Law of Thermodynamics is

d
dt

h− ν
d
dt

P = T
d
dt

η + µ
d
dt

SA = −1
ρ
∇ · FQ + ε (12)

where T is temperature, h(η, SA, P) is specific enthalpy, η is specific entropy, specific volume is denoted
by ν = 1/ρ, P is pressure and µ is the relative chemical potential of salt in seawater. The quantity ε is
the heat of viscous energy dissipation, and FQ is a generalized heat flux. Enthalpy is defined by

h = e + Pν (13)

where e is specific internal energy. Enthalpy from Equation (12) is seen to depend naturally on the
variables η, SA, and P, and in this form plays the role of a thermodynamic potential from which all
thermodynamic variables can be obtained by differentiation. For example, derivatives of enthalpy
with respect to its natural variables are T, µ, and ν, respectively. The derivation of Equation (12) is
discussed extensively in the TEOS-10 manual ([4]; see also [5,6]).

Equation (12) is exact. The semicompressible equations consider modifications to the
thermodynamic variables caused mainly by the difference between static and full pressure, and
we analyze Equation (12) from that perspective. In what follows, we will adopt entropy, salinity,
and pressure as state variables, and will often cast pressure dependency in terms of static pressure.
For example,

h = h∗(SA, η, P∗) + h∗P(SA, η, P∗)p + O(p2) (14)

where P∗ is static pressure and p the dynamic pressure, given by p = P− P∗. The superscript (∗) will
denote quantities evaluated at the static pressure. Specific volume, density, etc. will be written in
a manner similar to Equation (14). Note, according to Equation (12), Equation (14) is equivalent to

h = h∗(SA, η, P∗) + ν∗p (15)
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3.1. Type I Thermodynamics

We first develop what is a consistent statement of Type I thermodynamics. We begin by
considering the form of Equation (12) to O(p2); i.e.,

d
dt
(h∗ + ν∗p) = (ν∗ + p

∂

∂P
ν)

d
dt

P∗ + ν∗
d
dt

p + T+ d
dt

η + µ+ d
dt

SA + O(p2) (16)

where
T+ = T∗ + p

∂

∂P
T (17)

and similarly for µ+. Evaluating the derivative of the static pressure, Equation (16) becomes

d
dt
(h∗ + ν∗p) = (ν∗ + p

∂

∂P
ν)(−wgρr) + ν∗

d
dt

p + T+ d
dt

η + µ+ d
dt

SA (18)

While Equation (18) is literally correct to O(p2), it will turn out that a less accurate approximation,
to O(p), is required on the right hand side of Equation (12)

T+ d
dt

η + µ+ d
dt

SA = −ν∗∇FQ + ε (19)

The reason for this will become clear later, here we stress only that it assures thermodynamic
consistency of the Type I equations.

3.2. Type I Mechanical Energy Equation

The mechanical energy equation derived from Equation (1a) is

ρ∗
d
dt

K = −u · ∇p− wg(ρ∗ − ρr +
ρr p
ρ∗c2

s
) +∇ · ρ∗νvisc∇K− ρ∗ε (20)

where K = (u · u)/2 is the kinetic energy density. Introducing the gravitational potential Φ = gz and
using Equation (18)

ρ∗(
d
dt

K + Φ + h∗ + pν∗) = −u · ∇p +
d
dt

p +∇ · ρ∗νvisc∇K− ρ∗ε + ρ∗(T+ d
dt

η + µ+ d
dt

SA) (21)

Using Equation (12)
∂

∂P
h∗ = ν∗ (22)

so

h∗ = ho +
∫ P∗

Po
νdP = ho +

∫ P∗

Po

1
ρr

dP +
∫ P∗

Po

b
ρrg

dP (23)

where

b = −g
(ρ∗ − ρr)

ρ∗
(24)

The quantity ho is recognized as the potential enthalpy defined by [6], and the last integral in
Equation (23) is the so-called dynamic enthalpy of [7]. The quantity Po is a constant reference surface
pressure. The middle integral in Equation (23) reduces upon inspection to −Φ.

Thus, Equation (21) becomes

ρ∗
d
dt
(K + ho + h+I ) = −∇ · pu +∇ · ρ∗νvisc∇K− ρ∗ε + ρ∗(T+ d

dt
η + µ+ d

dt
SA) (25)
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Lastly, we exploit Equation (19) to obtain

ρ∗
d
dt
(K + ho + h+I ) = −∇ · pu +∇ · ρ∗νvisc∇K−∇ · FQ (26)

which is in conservative form. This implies the Type I equations have a well-formed energy principle,
provided they are augmented by Equations (18) and (19) as their thermodynamic equations. Note that
the entropy in Equation (19) can be rewritten as

ρ∗
d
dt

η = −∇ ·
FQ − µ+FS

T+
+ (FQ − µ+FS) · ∇(

1
T+

)− FS · ∇(
µ+

T+
) +

ρ∗ε

T+
(27)

which is entropy “non-conservation” in its familiar form. Hence, the Type I equations also have
a consistent entropy variable.

At this point, a practical difficulty is that entropy is not a typical ocean modelling variable.
Instead, McDougall’s Conservative Temperature

Θ =
ho

co
P

(28)

McDougall ([6]) is preferable and so it is necessary to work out a Conservative Temperature equation
to complement (27). From Equation (18), one finds

d
dt

h∗ − ν∗
d
dt

P∗ = − 1
ρ∗
∇ · FQ − p

∂

∂P
T

d
dt

η − p
∂

∂P
µ

d
dt

SA + ε (29)

By definition
ho = h(η, SA, Po) (30)

so
d
dt

ho = θ
d
dt

η + µo
d
dt

SA (31)

where θ is potential temperature and µo = µ(η, SA, Po). Potential enthalpy is thus related to entropy via

d
dt

η =
d
dt ho − µo

d
dt SA

θ
(32)

From Equation (23)

d
dt

ho = co
p

d
dt

Θ = − 1
ρ∗
∇ · FQ − (T+ − θ)

d
dt

η − (µ+ − µo)
d
dt

SA + ε (33)

so using Equation (32)
d
dt

Θ =
−ν∗∇ · FQ + ε

co
P(1 +

(T+−θ)
θ )

−
(( T+

θ )µo − µ+) d
dt SA

co
P(1 +

(T+−θ)
θ )

(34)

The underlined terms in Equation (34) are quite small, according to [8]. Neglecting them leads to
the statement that Conservative Temperature is very accurately portrayed as a conserved quantity;
however, all of those terms must be included in order to ensure full energy conservation.

It is seen, therefore, that the Type I equations yield energy conservation, but the cost is the insertion
of a large quantity (co

PΘ) into the energy equation. A similar result was labelled in [7] as a “crippling”
disadvantage of the Boussinesq-Bernoulli equation. It might thus be more useful to work with a partial
equation when considering energy; i.e., one that doesn’t explicitly include Conservative Temperature,
but in any case, the full potential enthalpy Equation (34) is required. We have also found the Type I
Semicompressible equations have a proper entropy variable and conserve total energy, and so are
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fully thermodynamically consistent. These equations are very similar to the pseudo-incompressible
equation set for general equations of state in [2].

3.3. Type II Equations: Potential, Kinetic, and Thermal Energies

The Type II equations are quite similar to the Type I equations except for the appearance of the
reference density profile, rather than the Boussinesq density, in the mass conservation equation and
in front of the momentum acceleration. Most of the analysis carries over in a manner similar to the
Type I analysis, with the one important distinction that the velocity divergence diagnosed from mass
conservation has no diabatic contributions

∇ · uI I =
gw
c2

sI I
(35)

Therefore, the mechanical energy equation for the system analogous to Equation (21) is

ρI I
d
dt

K = −∇ · pu + p
wg
c2

sI I
− wg(ρ∗ − ρI I +

p
c2

sI I
) +∇ · ρI Iνvisc∇K− ρI Iε (36)

with the underlined terms cancelling. Taking the material derivative of Equation (11) and substituting
in Equation (36) yields

ρI I
d
dt

K = −∇ · pu + ρI I

∫ P∗

Po

∂

∂SA

[
bI I
gρr

]
dP

d
dt

SA (37)

+ ρI I

∫ P∗

Po

∂

∂η

[
bI I
gρr

]
dP

d
dt

η − ρI I
d
dt

h+I I +∇ · ρ
I Iνvisc∇K− ρI Iε

To put Equation (37) in conservative form requires the potential enthalpy equation

d
dt

h∗ =
d
dt

ho + ν∗
d
dt

P∗ +
∫ P∗

Po

∂ν

∂SA
dP

d
dt

SA +
∫ P∗

Po

∂ν

∂η
dP

d
dt

η (38)

which is equivalent to Equation (33). This leads to

ρI I
d
dt
(K + h+I I + co

PΘ) = −∇ · pu−∇ · FQ +∇ · ρI Iνvisc∇K (39)

The Type II Conservative Temperature equation becomes

d
dt

Θ =
−νI I∇ · FQ + ε− (( T+

θ )µo − µ+) d
dt SA

co
P

T+

θ

(40)

The most significant difference relative to the Type I set is in Equation (35), where the diabatic
contributions to expansion are absent. Like for Type I, it is still necessary to retain all terms for
Conservative Temperature, rather than the approximate form recommended in [6]. We conclude that
the Type II equations also have a consistent mechanical and thermal energy structure. Our Type II
equations are very similar to the thermodynamically consistent anelastic set derived in [9].

3.4. A Comparison to the Boussinesq Set

To ensure full energetic consistency for the semicompressible equations, it has been necessary
to carry along some additional non-conservative effects in the calculations. We now analyze the
full energetics behavior of the Boussinesq set to gauge any additional computational burden of the
semicompressible set relative to them. If we adopt Conservative Temperature, salinity, and pressure as
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the thermodynamic coordinates and follow the procedure outlined in [7], we arrive at the Boussinesq
version of the Bernoulli equation

d
dt
(K + p + hB) =

∂

∂t
p +

∫ P∗

Po

[
∂

∂SA

b
gρo

]
dP

d
dt

SA +
∫ P∗

Po

[
∂

∂Θ
b

gρo

]
dP

d
dt

Θ− ε (41)

(see Equation (48) in [7]) where b = −g(ρ∗ − ρo)/ρ∗ is the Boussinesq buoyancy and ρo is the
Boussinesq reference density. Dynamic enthalpy as defined in [7] is

hB =
1

gρo

∫ P∗

Po
bdP (42)

Returning to a form of the potential enthalpy consistent with the Boussinesq approximation

h∗(SA, Θ, P∗) = ho +
1
ρo

∫ P∗

Po
(1 +

b
g
)dP (43)

where ho is potential enthalphy, and taking its material derivative yields

d
dt

h∗ − ν∗
d
dt

P∗ = co
P

d
dt

Θ +
∫ P∗

Po

[
∂

∂SA

b
gρo

]
dP

d
dt

SA (44)

+
∫ P∗

Po

[
∂

∂Θ
b

gρo

]
dP

d
dt

Θ = − 1
ρo
∇ · FQ + ε

Using Equation (44) to eliminate the pressure integrals in Equation (41) turns it into the
conservative Boussinesq energy equation

d
dt
(K + p + hB + co

PΘ) =
∂

∂t
p +∇ · ρI Iνvisc∇K− 1

ρo
∇ · FQ (45)

The Boussinesq Conservative Temperature equation is given by

d
dt

Θ =
−νo∇ · FQ + ε− (( T∗

θ )µo − µ+) d
dt SA

co
P

T∗
θ

(46)

The point of this section is that to obtain a conservative energy equation out of the Boussinesq
set, it is necessary to carry along the same additional diffusive terms as for the semi-compressible
equations. A similar result has recently been derived in [10,11]. This is not done in any Boussinesq
ocean circulation model of which we are aware.

4. Summary

The Type I and II semicompressible equations discussed in [1], which are analogues of the
pseudo-incompressible and anelastic equations known in meteorology, have undergone an examination
of their thermodynamic structure. To summarize, the Types I and II equations are fully consistent
from an energetic and thermodynamic perspective. To obtain this, it is necessary to include
a more complete equation for Conservative Temperature as a part of the equation sets than is
normally done. Interestingly, it turns out the Boussinesq equations must also carry analogous
quantities to be in purely conservative energetic form. We thus see the semicompressible equations
remain computationally competitive with the Boussinesq equations while admitting some degree of
compressibility. Other results here include the associated definitions of the dynamic enthalpy variables
belonging to the sets.

From a simple computer throughput perspective, this analysis recommends Type II relative
to Type I because they are slightly less computationally intensive. However, the Type II equations
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represent the oceanic density structure by a single vertical profile. Any such profile cannot perform
well globally, so the “cost” of the simplicity is a less accurate density representation. This promises to
be the most troubling when computing sea level changes via the continuity equation. The additional
accuracy provided by the Boussinesq density in the Type I set might well compensate for the (slight)
additional complexity.

Any further exploration with these equation sets should bear in mind the above points.
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