33 research outputs found

    Development of fluorinated indanone-based derivatives for the imaging of monoamine oxidase B via positron emission tomography

    Get PDF
    Ziel/Aim The monoamine oxidase B (MAO B) isoenzyme is known to be involved in the oxidative deamination of biogenic amines. While the use of MAO B inhibitors is already well-established for the treatment of Parkinson’s disease, recent reports suggest its involvement in certain types of brain tumors.1 We herein aim at the synthesis and preclinical evaluation of fluorinated indanone-based derivatives targeting MAO B in the brain via positron emission tomography (PET). Methodik/Methods A small series of fluorinated indanone derivatives was obtained via the O-alkylation or esterification starting with the commercially available 6-hydroxy-2,3-dihydro-1H-inden-1-one in one or two steps. Binding affinities towards the human MAO isoenzymes were estimated in vitro by radioligand displacement. HL126 was selected for radiofluorination via its corresponding boronic acid pinacol ester. In vitro autoradiography of [18F]HL126 was performed in mice brain slices. In vivo evaluation of [18F]HL126 in CD-1 mice was carried out and metabolism studies were performed in plasma and brain samples via radio-HPLC. Ergebnisse/Results The fluorinated indanone derivatives were synthesized in yields ranging from 65-89 %. The fluorophenyl ether derivative, HL126, was further selected for radiofluorination based on its high binding affinity towards MAO B (Ki = 6.9 ± 5.3 nM). [18F]HL126 was obtained by an alcohol-enhanced copper-mediated approach via the corresponding boronic acid pinacol ester precursor with radiochemical yields of about 11 ± 3 %, high radiochemical purities (≥99 %) and molar activities in the range of 20 GBq/mmol. In vitro autoradiography showed a specific blockade with selective MAO-A/B inhibitors. PET/MRI analyses revealed that [18F]HL126 readily enters the brain. Some radiometabolites do cross the blood-brain barrier. Schlussfolgerungen/Conclusions Although metabolism studies with [18F] HL126 revealed the presence of radiometabolites in the brain, the high binding affinity towards MAO B and the pronounced selectivity in in vitro autoradiography studies encourage further derivatization of indanone-based scaffolds for targeting MAO B

    Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment

    Get PDF
    Maternal immune activation (MIA) during pregnancy has been linked to an increased risk of developing psychiatric pathologies in later life. This link may be bridged by a defective microglial phenotype in the offspring induced by MIA, as microglia have key roles in the development and maintenance of neuronal signaling in the central nervous system. The beneficial effects of the immunomodulatory treatment with minocycline on schizophrenic patients are consistent with this hypothesis. Using the MIA mouse model, we found an altered microglial transcriptome and phagocytic function in the adult offspring accompanied by behavioral abnormalities. The changes in microglial phagocytosis on a functional and transcriptional level were similar to those observed in a mouse model of Alzheimer's disease hinting to a related microglial phenotype in neurodegenerative and psychiatric disorders. Minocycline treatment of adult MIA offspring reverted completely the transcriptional, functional and behavioral deficits, highlighting the potential benefits of therapeutic targeting of microglia in psychiatric disorders

    Evaluation of the Enantiomer Specific Biokinetics and Radiation Doses of [(18)F]Fluspidine-A New Tracer in Clinical Translation for Imaging of σ₁ Receptors.

    No full text
    The enantiomers of [(18)F]fluspidine, recently developed for imaging of σ₁ receptors, possess distinct pharmacokinetics facilitating their use in different clinical settings. To support their translational potential, we estimated the human radiation dose of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine from ex vivo biodistribution and PET/MRI data in mice after extrapolation to the human scale. In addition, we validated the preclinical results by performing a first-in-human PET/CT study using (S)-(-)-[(18)F]fluspidine. Based on the respective time-activity curves, we calculated using OLINDA the particular organ doses (ODs) and effective doses (EDs). The ED values of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine differed significantly with image-derived values obtained in mice with 12.9 μSv/MBq and 14.0 μSv/MBq (p < 0.025), respectively. A comparable ratio was estimated from the biodistribution data. In the human study, the ED of (S)-(-)-[(18)F]fluspidine was calculated as 21.0 μSv/MBq. Altogether, the ED values for both [(18)F]fluspidine enantiomers determined from the preclinical studies are comparable with other (18)F-labeled PET imaging agents. In addition, the first-in-human study confirmed that the radiation risk of (S)-(-)-[(18)F]fluspidine imaging is within acceptable limits. However, as already shown for other PET tracers, the actual ED of (S)-(-)-[(18)F]fluspidine in humans was underestimated by preclinical imaging which needs to be considered in other first-in-human studies

    Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease

    No full text
    Advanced glycation endproducts (AGEs), protein-bound oxidation products of sugars, have been shown to be involved in the pathophysiological processes of Alzheimer's disease (AD). AGEs induce the expression of various pro-inflammatory cytokines and the inducible nitric oxide synthase (iNOS) leading to a state of oxidative stress. AGE modification and resulting crosslinking of protein deposits such as amyloid plaques may contribute to the oxidative stress occurring in AD. The aim of this study was to immunohistochemically compare the localization of AGEs and beta-amyloid (Abeta) with iNOS in the temporal cortex (Area 22) of normal and AD brains. In aged normal individuals as well as early stage AD brains (i.e. no pathological findings in isocortical areas), a few astrocytes showed co-localization of AGE and iNOS in the upper neuronal layers, compared with no astrocytes detected in young controls. In late AD brains, there was a much denser accumulation of astrocytes co-localized with AGE and iNOS in the deeper and particularly upper neuronal layers. Also, numerous neurons with diffuse AGE but not iNOS reactivity and some AGE and iNOS-positive microglia were demonstrated, compared with only a few AGE-reactive neurons and no microglia in controls. Finally, astrocytes co-localized with AGE and iNOS as well as AGE and were found surrounding mature but not diffuse amyloid plaques in the AD brain. Our results show that AGE-positive astrocytes and microglia in the AD brain express iNOS and support the evidence of an AGE-induced oxidative stress occurring in the vicinity of the characteristic lesions of AD. Hence activation of microglia and astrocytes by AGEs with subsequent oxidative stress and cytokine release may be an important progression factor in AD

    Data publication: Development of fluorinated and methoxylated benzothiazole derivatives as highly potent and selective cannabinoid CB2 receptor ligands

    No full text
    Numerous studies have indicated the upregulation of the cannabinoid type 2 receptors (CB2 receptors) in neuroinflammation and cancer, and that their visualization with PET (Positron emission tomography) could provide a valuable diagnostic and/or therapy-monitoring tool in such disorders. However, the availability of reliable CB2-selective imaging probes is still lacking in clinical practice. Encouraged by promising CB2 affinity results obtained for a benzothiazole lead compound, 6a, further structural optimizations led to the development of a series of fluorinated and methoxylated benzothiazole derivatives, endowed with extremely high CB2 binding affinity and an exclusive selectivity to the CB2 receptor, along with structural sites suitable for radiolabeling. Compounds 20, 21, 24, 25, 29, 32 and 33 displayed subnanomolar CB2 Ki values (ranging from 0.16 nM to 0.68 nM) while lacked affinity to the CB1 receptor subtype. The fluorinated analogs, 21 and 29, were evaluated for their in vitro metabolic stability in mouse and human liver microsomes (MLM and HLM). Both 21 and 29 displayed an exceptionally high stability (98% and 91% intact compounds, respectively) after 60 min incubation with MLM. Contrastingly, compound 29 revealed an almost 2-fold greater metabolic stability after incubation with HLM for 60 min. Taken together, our data represent remarkably potent and selective CB2 ligands as credible leads that can be further exploited for 18F- or 11C-radiolabeling and utilization as PET tracers

    Studies on the affinity of 6-[(: N -(cyclo)aminoalkyl)oxy]-4 H -chromen-4-ones for sigma 1/2 receptors

    No full text
    Sigma (σ) receptors represent attractive targets for the development of potential agents for the treatment of several disorders, including Alzheimer's disease and neuropathic pain. In the search for multitarget small molecules (MSMs) against such disorders, we have re-discovered chromenones as new affine σ1/σ2 ligands. 6-(4-(Piperidin-1-yl)butoxy)-4H-chromen-4-one (7), a previously identified MSM with potent dual-target activities against acetylcholinesterase and monoamine oxidase B, also exhibited σ1/σ2 affinity. 6-(3-(Azepan-1-yl)propoxy)-4H-chromen-4-one (20) showed a Ki value for σ1 of 27.2 nM (selectivity (σ1/σ2) = 28), combining the desired σ1 receptor affinity with a dual inhibitory capacity against both acetyl- and butyrylcholinesterase. 6-((5-Morpholinopentyl)oxy)-4H-chromen-4-one (12) was almost equipotent to S1RA, an established σ1 receptor antagonist

    Contilisant, a Tetratarget Small Molecule for Alzheimer's Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile

    No full text
    Contilisant, a permeable, antioxidant, and neuroprotectant agent, showing high nM affinity at H3R and excellent inhibition of the monoamine oxidases and cholinesterases, is an affine and selective S1R agonist in the nanomolar range, based on the binding affinity and functional experiment, a result confirmed by molecular modeling. In addition, contilisant significantly restores the cognitive deficit induced by Aβ in the radial maze assay in an in vivo Alzheimer's disease test, comparing very favorably with donepezil.J.M.-C. thanks MINECO (Grant SAF2015-65586-R), UCJC (Grants 2015-12, 2014-35, and 2015-21), and EU (COST Action CA15135) for support. J.M.-C. thanks Prof. Stark and Prof. Ramsay, as well as Prof. Jia (Beijing Normal University), Dr. Chioua (CSIC), and Dr. Romero (UCM) for their help and support.Peer Reviewe

    Radiation dosimetry of the alpha(4)beta(2) nicotinic receptor ligand (+)-[F-18]flubatine, comparing preclinical PET/MRI and PET/CT to first-in-human PET/CT results

    No full text
    Background Both enantiomers of [18F]flubatine are new radioligands for neuroimaging of α4β2 nicotinic acetylcholine receptors with positron emission tomography (PET) exhibiting promising pharmacokinetics which makes them attractive for different clinical questions. In a previous preclinical study, the main advantage of (+)-[18F]flubatine compared to (−)-[18F]flubatine was its higher binding affinity suggesting that (+)-[18F]flubatine might be able to detect also slight reductions of α4β2 nAChRs and could be more sensitive than (−)-[18F]flubatine in early stages of Alzheimer’s disease. To support the clinical translation, we investigated a fully image-based internal dosimetry approach for (+)-[18F]flubatine, comparing mouse data collected on a preclinical PET/MRI system to piglet and first-in-human data acquired on a clinical PET/CT system. Time-activity curves (TACs) were obtained from the three species, the animal data extrapolated to human scale, exponentially fitted and the organ doses (OD), and effective dose (ED) calculated with OLINDA. Results The excreting organs (urinary bladder, kidneys, and liver) receive the highest organ doses in all species. Hence, a renal/hepatobiliary excretion pathway can be assumed. In addition, the ED conversion factors of 12.1 μSv/MBq (mice), 14.3 μSv/MBq (piglets), and 23.0 μSv/MBq (humans) were calculated which are well within the order of magnitude as known from other 18F-labeled radiotracers. Conclusions Although both enantiomers of [18F]flubatine exhibit different binding kinetics in the brain due to the respective affinities, the effective dose revealed no enantiomer-specific differences among the investigated species. The preclinical dosimetry and biodistribution of (+)-[18F]flubatine was shown and the feasibility of a dose assessment based on image data acquired on a small animal PET/MR and a clinical PET/CT was demonstrated. Additionally, the first-in-human study confirmed the tolerability of the radiation risk of (+)-[18F]flubatine imaging which is well within the range as caused by other 18F-labeled tracers. However, as shown in previous studies, the ED in humans is underestimated by up to 50 % using preclinical imaging for internal dosimetry. This fact needs to be considered when applying for first-in-human studies based on preclinical biokinetic data scaled to human anatomy
    corecore