92 research outputs found

    Typical support and Sanov large deviations of correlated states

    Get PDF
    Discrete stationary classical processes as well as quantum lattice states are asymptotically confined to their respective typical support, the exponential growth rate of which is given by the (maximal ergodic) entropy. In the iid case the distinguishability of typical supports can be asymptotically specified by means of the relative entropy, according to Sanov's theorem. We give an extension to the correlated case, referring to the newly introduced class of HP-states.Comment: 29 pages, no figures, references adde

    Exclusion processes with degenerate rates: convergence to equilibrium and tagged particle

    Full text link
    Stochastic lattice gases with degenerate rates, namely conservative particle systems where the exchange rates vanish for some configurations, have been introduced as simplified models for glassy dynamics. We introduce two particular models and consider them in a finite volume of size \ell in contact with particle reservoirs at the boundary. We prove that, as for non--degenerate rates, the inverse of the spectral gap and the logarithmic Sobolev constant grow as 2\ell^2. It is also shown how one can obtain, via a scaling limit from the logarithmic Sobolev inequality, the exponential decay of a macroscopic entropy associated to a degenerate parabolic differential equation (porous media equation). We analyze finally the tagged particle displacement for the stationary process in infinite volume. In dimension larger than two we prove that, in the diffusive scaling limit, it converges to a Brownian motion with non--degenerate diffusion coefficient.Comment: 25 pages, 3 figure

    Minimum memory for generating rare events

    Full text link
    We classify the rare events of structured, memoryful stochastic processes and use this to analyze sequential and parallel generators for these events. Given a stochastic process, we introduce a method to construct a process whose typical realizations are a given process' rare events. This leads to an expression for the minimum memory required to generate rare events. We then show that the recently discovered classical-quantum ambiguity of simplicity also occurs when comparing the structure of process fluctuations

    Cut Points and Diffusions in Random Environment

    Full text link
    In this article we investigate the asymptotic behavior of a new class of multi-dimensional diffusions in random environment. We introduce cut times in the spirit of the work done by Bolthausen, Sznitman and Zeitouni, see [4], in the discrete setting providing a decoupling effect in the process. This allows us to take advantage of an ergodic structure to derive a strong law of large numbers with possibly vanishing limiting velocity and a central limit theorem under the quenched measure.Comment: 44 pages; accepted for publication in "Journal of Theoretical Probability

    Rigorous Probabilistic Analysis of Equilibrium Crystal Shapes

    Full text link
    The rigorous microscopic theory of equilibrium crystal shapes has made enormous progress during the last decade. We review here the main results which have been obtained, both in two and higher dimensions. In particular, we describe how the phenomenological Wulff and Winterbottom constructions can be derived from the microscopic description provided by the equilibrium statistical mechanics of lattice gases. We focus on the main conceptual issues and describe the central ideas of the existing approaches.Comment: To appear in the March 2000 special issue of Journal of Mathematical Physics on Probabilistic Methods in Statistical Physic

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    Reduced Spontaneous Eye Blink Rates in Recreational Cocaine Users: Evidence for Dopaminergic Hypoactivity

    Get PDF
    Chronic use of cocaine is associated with a reduced density of dopaminergic D2 receptors in the striatum, with negative consequences for cognitive control processes. Increasing evidence suggests that cognitive control is also affected in recreational cocaine consumers. This study aimed at linking these observations to dopaminergic malfunction by studying the spontaneous eyeblink rate (EBR), a marker of striatal dopaminergic functioning, in adult recreational users and a cocaine-free sample that was matched on age, race, gender, and personality traits. Correlation analyses show that EBR is significantly reduced in recreational users compared to cocaine-free controls, suggesting that cocaine use induces hypoactivity in the subcortical dopamine system

    Dopamine and inhibitory action control: evidence from spontaneous eye blink rates

    Get PDF
    The inhibitory control of actions has been claimed to rely on dopaminergic pathways. Given that this hypothesis is mainly based on patient and drug studies, some authors have questioned its validity and suggested that beneficial effects of dopaminergic stimulants on response inhibition may be limited to cases of suboptimal inhibitory functioning. We present evidence that, in carefully selected healthy adults, spontaneous eyeblink rate, a marker of central dopaminergic functioning, reliably predicts the efficiency in inhibiting unwanted action tendencies in a stop-signal task. These findings support the assumption of a modulatory role for dopamine in inhibitory action control

    Euclidean Gibbs states of interacting quantum anharmonic oscillators

    Full text link
    A rigorous description of the equilibrium thermodynamic properties of an infinite system of interacting ν\nu-dimensional quantum anharmonic oscillators is given. The oscillators are indexed by the elements of a countable set LRd\mathbb{L}\subset \mathbb{R}^d, possibly irregular; the anharmonic potentials vary from site to site. The description is based on the representation of the Gibbs states in terms of path measures -- the so called Euclidean Gibbs measures. It is proven that: (a) the set of such measures Gt\mathcal{G}^{\rm t} is non-void and compact; (b) every μGt\mu \in \mathcal{G}^{\rm t} obeys an exponential integrability estimate, the same for the whole set Gt\mathcal{G}^{\rm t}; (c) every μGt\mu \in \mathcal{G}^{\rm t} has a Lebowitz-Presutti type support; (d) Gt\mathcal{G}^{\rm t} is a singleton at high temperatures. In the case of attractive interaction and ν=1\nu=1 we prove that Gt>1|\mathcal{G}^{\rm t}|>1 at low temperatures. The uniqueness of Gibbs measures due to quantum effects and at a nonzero external field are also proven in this case. Thereby, a qualitative theory of phase transitions and quantum effects, which interprets most important experimental data known for the corresponding physical objects, is developed. The mathematical result of the paper is a complete description of the set Gt\mathcal{G}^{\rm t}, which refines and extends the results known for models of this type.Comment: 60 page
    corecore