1,292 research outputs found

    Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening

    Get PDF
    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling

    Optimal Packings of Superballs

    Full text link
    Dense hard-particle packings are intimately related to the structure of low-temperature phases of matter and are useful models of heterogeneous materials and granular media. Most studies of the densest packings in three dimensions have considered spherical shapes, and it is only more recently that nonspherical shapes (e.g., ellipsoids) have been investigated. Superballs (whose shapes are defined by |x1|^2p + |x2|^2p + |x3|^2p <= 1) provide a versatile family of convex particles (p >= 0.5) with both cubic- and octahedral-like shapes as well as concave particles (0 < p < 0.5) with octahedral-like shapes. In this paper, we provide analytical constructions for the densest known superball packings for all convex and concave cases. The candidate maximally dense packings are certain families of Bravais lattice packings. The maximal packing density as a function of p is nonanalytic at the sphere-point (p = 1) and increases dramatically as p moves away from unity. The packing characteristics determined by the broken rotational symmetry of superballs are similar to but richer than their two-dimensional "superdisk" counterparts, and are distinctly different from that of ellipsoid packings. Our candidate optimal superball packings provide a starting point to quantify the equilibrium phase behavior of superball systems, which should deepen our understanding of the statistical thermodynamics of nonspherical-particle systems.Comment: 28 pages, 16 figure

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    'Surely the most natural scenario in the world’: Representations of ‘Family’ in BBC Pre-school Television

    Get PDF
    Historically, the majority of work on British children’s television has adopted either an institutional or an audience focus, with the texts themselves often overlooked. This neglect has meant that questions of representation in British children’s television – including issues such as family, gender, class or ethnicity - have been infrequently analysed in the UK context. In this article, we adopt a primarily qualitative methodology and analyse the various textual manifestations of ‘family’, group, or community as represented in a selected number of BBC pre-school programmes. In doing so, we question the (limited amount of) international work that has examined representations of the family in children’s television, and argue that nuclear family structures do not predominate in this sphere

    Effect of additive concentration during copper deposition using EnFACE electrolyte

    Get PDF
    Copper deposition from solutions using high concentration of acid, metal ions and polyethylene glycol (PEG), and bis-(3-sulphopropyl) disulphide (SPS) and chloride ions (Cl-) is well known. A recent maskless micropatterning technology, which has the potential to replace the traditional photolithographic process, called EnFACE, proposed using an acid-free, low metal ion solution which is in direct contrast to those used in standard plating technology. In this work copper has been deposited using both standard electroplating solutions and those used in the EnFACE process. In the standard electrolyte 0.63 M CuSO4 and 2.04 M H2SO4 has been used, along with Gleam additives supplied by Dow Chemicals. For the Enface electrolyte, copper deposition has been carried out without any acid, and with different concentrations of additives between 17%-200% of those recommended by suppliers. 25 μm of metal has been plated on stainless steel coupons as suggested by ASTM, peeled off and subjected to ductility and resistance measurements. Scanning electron microscopy and electron back scatter diffraction have been carried out to determine the deposit morphology. It was found that copper deposits obtained from acid-free solutions containing low concentration of metal ion and additives produced copper deposits with properties which are comparable to those obtained from standard electrolytes. The optimum additive concentration for the EnFACE electrolyte was 50% of the supplier recommended value

    "Studs": a squat-type defect in rails

    Get PDF
    In the mid-2000s a rail defect that was classified as a "squat" became increasingly common on London Underground's track. By 2006 there were about 600 of these and they had become the Underground's single most common rail defect. This defect occurred almost exclusively on lines carrying relatively new rolling stock. The work reported here was undertaken initially to characterize this defect, advise as to whether it was indeed a squat and propose a hypothesis that explained its mechanism of formation. The paper includes observations and measurements from track and initial results of metallurgical analysis. The hypothesis for formation of the defects is presented, and both similarities and differences are discussed between these defects and the classical "squat". The defect on London Underground appears to be the same as that described by Marich and his colleagues in Australia and by Li and his colleagues in the Netherlands. It is evidently not a rolling contact fatigue defect. In order to avoid confusion arising from simple misuse of an established term, it is proposed that these defects be given a different name, for which “stud” is proposed. Evidence to date is that the "stud" is a significantly more benign defect than a "squat"

    A Viscoelastic model of phase separation

    Full text link
    We show here a general model of phase separation in isotropic condensed matter, namely, a viscoelastic model. We propose that the bulk mechanical relaxation modulus that has so far been ignored in previous theories plays an important role in viscoelastic phase separation in addition to the shear relaxation modulus. In polymer solutions, for example, attractive interactions between polymers under a poor-solvent condition likely cause the transient gellike behavior, which makes both bulk and shear modes active. Although such attractive interactions between molecules of the same component exist universally in the two-phase region of a mixture, the stress arising from attractive interactions is asymmetrically divided between the components only in dynamically asymmetric mixtures such as polymer solutions and colloidal suspensions. Thus, the interaction network between the slower components, which can store the elastic energy against its deformation through bulk and shear moduli, is formed. It is the bulk relaxation modulus associated with this interaction network that is primarily responsible for the appearance of the sponge structure peculiar to viscoelastic phase separation and the phase inversion. We demonstrate that a viscoelastic model of phase separation including this new effect is a general model that can describe all types of isotropic phase separation including solid and fluid models as its special cases without any exception, if there is no coupling with additional order parameter. The physical origin of volume shrinking behavior during viscoelastic phase separation and the universality of the resulting spongelike structure are also discussed.Comment: 14 pages, RevTex, To appear in Phys. Rev
    corecore