6,247 research outputs found
Interplay between antiferromagnetic order and spin polarization in ferromagnetic metal/electron-doped cuprate superconductor junctions
Recently we proposed a theory of point-contact spectroscopy and argued that
the splitting of zero-bias conductance peak (ZBCP) in electron-doped cuprate
superconductor point-contact spectroscopy is due to the coexistence of
antiferromagnetic (AF) and d-wave superconducting orders [Phys. Rev. B {\bf
76}, 220504(R) (2007)]. Here we extend the theory to study the tunneling in the
ferromagnetic metal/electron-doped cuprate superconductor (FM/EDSC) junctions.
In addition to the AF order, the effects of spin polarization, Fermi-wave
vector mismatch (FWM) between the FM and EDSC regions, and effective barrier
are investigated. It is shown that there exits midgap surface state (MSS)
contribution to the conductance to which Andreev reflections are largely
modified due to the interplay between the exchange field of ferromagnetic metal
and the AF order in EDSC. Low-energy anomalous conductance enhancement can
occur which could further test the existence of AF order in EDSC. Finally, we
propose a more accurate formula in determining the spin polarization value in
combination with the point-contact conductance data.Comment: 9 pages, 8 figure
Incorporating Inertia Into Multi-Agent Systems
We consider a model that demonstrates the crucial role of inertia and
stickiness in multi-agent systems, based on the Minority Game (MG). The inertia
of an agent is introduced into the game model by allowing agents to apply
hypothesis testing when choosing their best strategies, thereby reducing their
reactivity towards changes in the environment. We find by extensive numerical
simulations that our game shows a remarkable improvement of global cooperation
throughout the whole phase space. In other words, the maladaptation behavior
due to over-reaction of agents is removed. These agents are also shown to be
advantageous over the standard ones, which are sometimes too sensitive to
attain a fair success rate. We also calculate analytically the minimum amount
of inertia needed to achieve the above improvement. Our calculation is
consistent with the numerical simulation results. Finally, we review some
related works in the field that show similar behaviors and compare them to our
work.Comment: extensively revised, 8 pages, 10 figures in revtex
Inflatonless Inflation
We consider a 4+N dimensional Einstein gravity coupled to a non-linear sigma
model. This theory admits a solution in which the N extra dimensions contract
exponentially while the ordinary space expand exponentially. Physically, the
non-linear sigma fields induce the dynamical compactification of the extra
dimensions, which in turn drives inflation. No inflatons are required.Comment: 12 pages, version to appear in IJMP
Controlling spin in an electronic interferometer with spin-active interfaces
We consider electronic current transport through a ballistic one-dimensional
quantum wire connected to two ferromagnetic leads. We study the effects of the
spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon
scattering at the boundaries of the wire. The SDIPS produces a spin splitting
of the wire resonant energies which is tunable with the gate voltage and the
angle between the ferromagnetic polarizations. This property could be used for
manipulating spins. In particular, it leads to a giant magnetoresistance effect
with a sign tunable with the gate voltage and the magnetic field applied to the
wire.Comment: 5 pages, 3 figures. to be published in Europhysics Letter
A method to find quantum noiseless subsystems
We develop a structure theory for decoherence-free subspaces and noiseless
subsystems that applies to arbitrary (not necessarily unital) quantum
operations. The theory can be alternatively phrased in terms of the
superoperator perspective, or the algebraic noise commutant formalism. As an
application, we propose a method for finding all such subspaces and subsystems
for arbitrary quantum operations. We suggest that this work brings the
fundamental passive technique for error correction in quantum computing an
important step closer to practical realization.Comment: 5 pages, to appear in Physical Review Letter
Fiber-top atomic force microscope
We present the implementation of an atomic force microscope (AFM) based on fiber-top design. Our results demonstrate that the performances of fiber-top AFMs in contact mode are comparable to those of similar commercially available instruments. Our device thus represents an interesting\ud
alternative to existing AFMs, particularly for applications outside specialized research laboratories, where a compact, user-friendly, and versatile tool might often be preferred
On the 2:1 Orbital Resonance in the HD 82943 Planetary System
We present an analysis of the HD 82943 planetary system based on a radial
velocity data set that combines new measurements obtained with the Keck
telescope and the CORALIE measurements published in graphical form. We examine
simultaneously the goodness of fit and the dynamical properties of the best-fit
double-Keplerian model as a function of the poorly constrained eccentricity and
argument of periapse of the outer planet's orbit. The fit with the minimum
chi_{nu}^2 is dynamically unstable if the orbits are assumed to be coplanar.
However, the minimum is relatively shallow, and there is a wide range of fits
outside the minimum with reasonable chi_{nu}^2. For an assumed coplanar
inclination i = 30 deg. (sin i = 0.5), only good fits with both of the lowest
order, eccentricity-type mean-motion resonance variables at the 2:1
commensurability, theta_1 and theta_2, librating about 0 deg. are stable. For
sin i = 1, there are also some good fits with only theta_1 (involving the inner
planet's periapse longitude) librating that are stable for at least 10^8 years.
The libration semiamplitudes are about 6 deg. for theta_1 and 10 deg. for
theta_2 for the stable good fit with the smallest libration amplitudes of both
theta_1 and theta_2. We do not find any good fits that are non-resonant and
stable. Thus the two planets in the HD 82943 system are almost certainly in 2:1
mean-motion resonance, with at least theta_1 librating, and the observations
may even be consistent with small-amplitude librations of both theta_1 and
theta_2.Comment: 24 pages, including 10 figures; accepted for publication in Ap
Multiplpe Choice Minority Game With Different Publicly Known Histories
In the standard Minority Game, players use historical minority choices as the
sole public information to pick one out of the two alternatives. However,
publishing historical minority choices is not the only way to present global
system information to players when more than two alternatives are available.
Thus, it is instructive to study the dynamics and cooperative behaviors of this
extended game as a function of the global information provided. We numerically
find that although the system dynamics depends on the kind of public
information given to the players, the degree of cooperation follows the same
trend as that of the standard Minority Game. We also explain most of our
findings by the crowd-anticrowd theory.Comment: Extensively revised, to appear in New J Phys, 7 pages with 4 figure
Parametrical optimization of laser surface alloyed NiTi shape memory alloy with Co and Nb by the Taguchi method
Different high-purity metal powders were successfully alloyed on to a nickel titanium (NiTi) shape memory alloy (SMA) with a 3 kW carbon dioxide (CO2) laser system. In order to produce an alloyed layer with complete penetration and acceptable composition profile, the Taguchi approach was used as a statistical technique for optimizing selected laser processing parameters. A systematic study of laser power, scanning velocity, and pre-paste powder thickness was conducted. The signal-to-noise ratios (S/N) for each control factor were calculated in order to assess the deviation from the average response. Analysis of variance (ANOVA) was carried out to understand the significance of process variables affecting the process effects. The Taguchi method was able to determine the laser process parameters for the laser surface alloying technique with high statistical accuracy and yield a laser surface alloying technique capable of achieving a desirable dilution ratio. Energy dispersive spectrometry consistently showed that the per cent by weight of Ni was reduced by 45 per cent as compared with untreated NiTi SMA when the Taguchi-determined laser processing parameters were employed, thus verifying the laser's processing parameters as optimum
Coherent States Formulation of Polymer Field Theory
We introduce a stable and efficient complex Langevin (CL) scheme to enable
the first numerical simulations of the coherent-states (CS) formulation of
polymer field theory. In contrast with Edwards' well known auxiliary-field (AF)
framework, the CS formulation does not contain an embedded non-linear,
non-local functional of the auxiliary fields, and the action of the field
theory has a fully explicit, finite-order and semi-local polynomial character.
In the context of a polymer solution model, we demonstrate that the new CS-CL
dynamical scheme for sampling fluctuations in the space of coherent states
yields results in good agreement with now-standard AF simulations. The
formalism is potentially applicable to a broad range of polymer architectures
and may facilitate systematic generation of trial actions for use in
coarse-graining and numerical renormalization-group studies.Comment: 14pages 8 figure
- …