889 research outputs found
Structure and binding in crystals of cage-like molecules: hexamine and platonic hydrocarbons
In this paper, we show that first-principle calculations using a van der
Waals density functional (vdW-DF), [Phys. Rev. Lett. , 246401
(2004)] permits determination of molecular crystal structure. We study the
crystal structures of hexamine and the platonic hydrocarbons (cubane and
dodecahedrane). The calculated lattice parameters and cohesion energy agree
well with experiments. Further, we examine the asymptotic accounts of the van
der Waals forces by comparing full vdW-DF with asymptotic atom-based pair
potentials extracted from vdW-DF. The character of the binding differ in the
two cases, with vdW-DF giving a significant enhancement at intermediate and
relevant binding separations. We analyze consequences of this result for
methods such as DFT-D, and question DFT-D's transferability over the full range
of separations
Stress-Particle Smoothed Particle Hydrodynamics: an application to the failure and post-failure behaviour of slopes
We present a new numerical approach in the framework of Smooth Particle Hydrodynamics (SPH) to solve the zero energy modes and tensile instabilities, without the need for the fine tuning of non-physical artificial parameters. The method uses a combination of stress-points and nodes and includes a new stress-point position updating scheme that also removes the need to implement artificial repulsive forces at the boundary. The model is validated for large deformation geomechanics problems, and is able to simulate strain localisation within soil samples and slopes. In particular, the new model produces stable and accurate results of the failure and post-failure of slopes, consisting of both cohesive and cohesionless materials, for the first time
Transition phenomena in unstably stratified turbulent flows
We study experimentally and theoretically transition phenomena caused by the
external forcing from Rayleigh-Benard convection with the large-scale
circulation (LSC) to the limiting regime of unstably stratified turbulent flow
without LSC whereby the temperature field behaves like a passive scalar. In the
experiments we use the Rayleigh-B\'enard apparatus with an additional source of
turbulence produced by two oscillating grids located nearby the side walls of
the chamber. When the frequency of the grid oscillations is larger than 2 Hz,
the large-scale circulation (LSC) in turbulent convection is destroyed, and the
destruction of the LSC is accompanied by a strong change of the mean
temperature distribution. However, in all regimes of the unstably stratified
turbulent flow the ratio varies slightly (even in the range
of parameters whereby the behaviour of the temperature field is different from
that of the passive scalar). Here are the integral scales of
turbulence along x, y, z directions, T and \theta are the mean and fluctuating
parts of the fluid temperature. At all frequencies of the grid oscillations we
have detected the long-term nonlinear oscillations of the mean temperature. The
theoretical predictions based on the budget equations for turbulent kinetic
energy, turbulent temperature fluctuations and turbulent heat flux, are in
agreement with the experimental results.Comment: 14 pages, 14 figures, REVTEX4-1, revised versio
IMECE2008-68772 ASSESMENT OF THE PERFORMANCE OF ALTERNATIVE AVIATION FUEL IN A MODERN AIR-SPRAY COMBUSTOR (MAC)
ABSTRACT Recent concerns over energy security and environmental considerations have highlighted the importance of finding alternative aviation fuels. It is expected that coal and biomass derived fuels will fulfil a substantial part of these energy requirements. However, because of the physical and chemical difference in the composition of these fuels, there are potential problems associated with the efficiency and the emissions of the combustion process. Over the past 25 years Computational Fluid Dynamics (CFD) has become increasingly popular with the gas turbine industry as a design tool for establishing and optimising key parameters of systems prior to starting expensive trials. In this paper the performance of a typical aviation fuel, kerosene, an alternative aviation fuel, biofuel and a blend have been examined using CFD modelling. A comprehensive understanding of the kinetics of the reaction for bio aviation fuels at both high and low temperature is necessary to perform reliable simulations of ignition, combustion and emissions in an aero-engine. A novel detailed reaction mechanism was used to represent the aviation fuel oxidation mechanism. The fuel combustion is calculated using a 3D commercial solver using a mixture fraction/pdf approach. Firstly, the study demonstrates that CFD predictions compare favourably with experimental data obtained by (MAC) when used with traditional jet fuel (kerosene). Furthermore, the 3D CFD model has been refined to use the laminar flamelet model (LFM) approach that incorporates recently developed chemical reaction mechanisms for the bioaviation fuel. This has enabled predictions for the bio-aviation fuel to be made. The impact of using the blended fuel has been shown to be very similar in performance to that of the 100% kerosene, confirming that aircraft running on 20% blended fuel should have no significant reduction in performance. It was also found that for the given operating conditions there is a significant reduction in performance when 100% biofuel is used. Additionally, interesting predictions were obtained, related to NO x emissions for the blend and 100% biofuel
Correlation effects during liquid infiltration into hydrophobic nanoporous mediums
Correlation effects arising during liquid infiltration into hydrophobic
porous medium are considered. On the basis of these effects a mechanism of
energy absorption at filling porous medium by nonwetting liquid is suggested.
In accordance with this mechanism, the absorption of mechanical energy is a
result expenditure of energy for the formation of menisci in the pores on the
shell of the infinite cluster and expenditure of energy for the formation of
liquid-porous medium interface in the pores belonging to the infinite cluster
of filled pores. It was found that in dependences on the porosity and,
consequently, in dependences on the number of filled pores neighbors, the
thermal effect of filling can be either positive or negative and the cycle of
infiltration-defiltration can be closed with full outflow of liquid. It can
occur under certain relation between percolation properties of porous medium
and the energy characteristics of the liquid-porous medium interface and the
liquid-gas interface. It is shown that a consecutive account of these
correlation effects and percolation properties of the pores space during
infiltration allow to describe all experimental data under discussion
Reverberation Mapping Results for Five Seyfert 1 Galaxies
We present the results from a detailed analysis of photometric and
spectrophotometric data on five Seyfert 1 galaxies observed as a part of a
recent reverberation mapping program. The data were collected at several
observatories over a 140-day span beginning in 2010 August and ending in 2011
January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501,
3C120, Mrk 6, and PG2130+099, from which we have measured the time lag between
variations in the 5100 Angstrom continuum and the H-beta broad emission line.
We then used these measurements to calculate the mass of the supermassive black
hole at the center of each of these galaxies. Our new measurements
substantially improve previous measurements of MBH and the size of the broad
line-emitting region for four sources and add a measurement for one new object.
Our new measurements are consistent with photoionization physics regulating the
location of the broad line region in active galactic nuclei.Comment: 45 pages, 5 figures. Accepted for publication in ApJ. For a brief
video explaining the key results of this paper, see
http://www.youtube.com/user/OSUAstronom
Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters
The dependencies of the melting point and the lattice parameter of supported
metal nanoclusters as functions of clusters height are theoretically
investigated in the framework of the uniform approach. The vacancy mechanism
describing the melting point and the lattice parameter shifts in nanoclusters
with decrease of their size is proposed. It is shown that under the high vacuum
conditions (p<10^-7 torr) the essential role in clusters melting point and
lattice parameter shifts is played by the van der Waals forces of
cluster-substrate interation. The proposed model satisfactorily accounts for
the experimental data.Comment: 6 pages, 3 figures, 1 tabl
Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469
A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has
yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black
hole mass measurement of about 10 million solar masses, consistent with
previous measurements. A very low level of variability during the monitoring
campaign precluded meeting our original goal of recovering velocity-delay maps
from the data, but with the new Hbeta measurement, NGC 7469 is no longer an
outlier in the relationship between the size of the Hbeta-emitting broad-line
region and the AGN luminosity. It was necessary to detrend the continuum and
Hbeta and He II 4686 line light curves and those from archival UV data for
different time-series analysis methods to yield consistent results.Comment: 9 Pages, 7 figures, 6 tables. Accepted for publication in The
Astrophysical Journa
A Reverberation Lag for The High-Ionization Component of the Broad-Line Region in the Narrow-Line Seyfert 1 Mrk 335
We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He ii λ 4686 broad emission line relative to the optical continuum to be 2.7 °æ 0.6 days and the lag in the Hβλ 4861 broad emission line to be 13.9 °æ 0.9 days. Combined with the line width, the He ii lag yields a black hole mass MBH = (2. 6 °æ 0. 8) °ø 107M . This measurement is consistent with measurements made using the Hβλ 4861 line, suggesting that the He ii emission originates in the same structure as Hβ , but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He ii emission originates from gas in virial motion rather than outflow
- …