556 research outputs found
Dynamic fluvial systems and gravel progradation in the Himalayan foreland
Although the large-scale stratigraphy of many terrestrial foreland basins is punctuated by major episodes of gravel progradation, the relationships of such facies to hinterland tectonism and climate change are often unclear. Structural reentrants provide windows into older and more proximal parts of the foreland than are usually exposed, and thus provide key insights to earlier phases of foreland evolution. Our magnetostratigraphic studies show that, although the major lithofacies preserved within the Himachal Pradesh structural reentrant in northwestern India resemble Neogene facies in Pakistan, they have a much greater temporal and spatial variability. From 11.5 to 7 Ma, major facies boundaries in Himachal Pradesh vary by as much as 2–3 m.y. across distances of 20–30 km and are controlled by the interference between a major southeastward-flowing axial river and a major southwestward-flow- ing transverse river. A thick but highly confined middle to late Miocene conglomerate facies includes the oldest extensive Siwalik conglomerates yet dated (10 Ma) and implies the development of significant erosional topography along the Main Boundary thrust prior to 11 Ma. Our studies document extensive syntectonic gravel progradation with conglomerates extending tens of kilometers into the undeformed foreland during a period of increased subsidence rate and within 1–2 m.y. of major thrust initiation. Overall, gravel progradation is modulated by the interplay among subsidence, sediment supply, and the proportion of gravels in rivers entering the foreland
Apollo experience report: Real-time display system
The real time display system used in the Apollo Program is described; the systematic organization of the system, which resulted from hardware/software trade-offs and the establishment of system criteria, is emphasized. Each basic requirement of the real time display system was met by a separate subsystem. The computer input multiplexer subsystem, the plotting display subsystem, the digital display subsystem, and the digital television subsystem are described. Also described are the automated display design and the generation of precision photographic reference slides required for the three display subsystems
Quantification of three-dimensional folding using fluvial terraces: A case study from the Mushi anticline, northern margin of the Chinese Pamir
Fold deformation in three dimensions involves shortening, uplift, and lateral growth. Fluvial terraces represent strain markers that have been widely applied to constrain a fold's shortening and uplift. For the lateral growth, however, the utility of fluvial terraces has been commonly ignored. Situated along northern margin of Chinese Pamir, the Mushi anticline preserves, along its northern flank, flights of passively deformed fluvial terraces that can be used to constrain three-dimensional folding history, especially lateral growth. The Mushi anticline is a geometrically simple fault-tip fold with a total shortening of 740?±?110?m and rock uplift of ~1300?m. Geologic and geomorphic mapping and dGPS surveys reveal that terrace surfaces perpendicular to the fold's strike display increased rotation with age, implying the fold grows by progressive limb rotation. We use a pure-shear fault-tip fold model to estimate a uniform shortening rate of 1.5?+?1.3/?0.5?mm/a and a rock-uplift rate of 2.3?+?2.1/?0.8?mm/a. Parallel to the fold's strike, longitudinal profiles of terrace surfaces also display age-dependent increases in slopes. We present a new model to distinguish lateral growth mechanisms (lateral lengthening and/or rotation above a fixed tip). This model indicates that eastward lengthening of the Mushi anticline ceased by at least ~134?ka and its lateral growth has been dominated by rotation. Our study confirms that terrace deformation along a fold's strike not only can constrain the lateral lengthening rate but can serve to quantify the magnitude and rate of lateral rotation: attributes that are commonly difficult to define when relying on other geomorphic criteria
Dynamic fluvial systems and gravel progradation in the Himalayan foreland
Although the large-scale stratigraphy of many terrestrial foreland basins is punctuated by major episodes of gravel progradation, the relationships of such facies to hinterland tectonism and climate change are often unclear. Structural reentrants provide windows into older and more proximal parts of the foreland than are usually exposed, and thus provide key insights to earlier phases of foreland evolution. Our magnetostratigraphic studies show that, although the major lithofacies preserved within the Himachal Pradesh structural reentrant in northwestern India resemble Neogene facies in Pakistan, they have a much greater temporal and spatial variability. From 11.5 to 7 Ma, major facies boundaries in Himachal Pradesh vary by as much as 2–3 m.y. across distances of 20–30 km and are controlled by the interference between a major southeastward-flowing axial river and a major southwestward-flow- ing transverse river. A thick but highly confined middle to late Miocene conglomerate facies includes the oldest extensive Siwalik conglomerates yet dated (10 Ma) and implies the development of significant erosional topography along the Main Boundary thrust prior to 11 Ma. Our studies document extensive syntectonic gravel progradation with conglomerates extending tens of kilometers into the undeformed foreland during a period of increased subsidence rate and within 1–2 m.y. of major thrust initiation. Overall, gravel progradation is modulated by the interplay among subsidence, sediment supply, and the proportion of gravels in rivers entering the foreland
Channel Width Response to Differential Uplift
The role of channel width and slope adjustments to differential uplift in rivers within actively deforming terrains remains contentious. Here high‐resolution topographic surveying of formerly antecedent outwash channels demonstrates marked changes in channel width as a primary response to differential uplift. For five Late Quaternary alluvial paleochannels crossing small folds along the active Ostler fault zone of southern New Zealand, nearly continuous measurements of paleochannel width and concomitant incision reveal abrupt narrowing of widths toward minimum values at channel positions coincident with the initial uplift. When the magnitude of differential uplift is sufficiently small, narrowing alone permits these channels to remain antecedent. In the context of a unit stream power model for fluvial erosion, observed limits on the magnitude of channel narrowing suggest that above some threshold amount of differential uplift, continued incision requires concomitant changes in channel gradient. Thus when crossing small growing folds, alluvial rivers simply narrow their channels, whereas larger folds that demand greater incision prompt an initial narrowing followed by channel steepening
The Aerodynamic Design and Calibration of an Asymmetric Variable Mach Number Nozzle with a Sliding Block for the Mach Number Range 1.27 to 2.75
A method of designing as asymmetric, fixed geometry, variable Mach number nozzle has been developed by using the method of characteristics. A small nozzle conforming to the analytically determined ordinates was constructed and calibrated over a range of Mach numbers extending from 1.27 to 2.75. The results show the variation in Mach number to be plus or minus 0.01 or less and in the flow direction to be plus or minus 0.2 degrees within the test section. The range of Mach numbers from 1.27 to 2.75 was obtained by translating the lower block in a straight line parallel to the test-section center line for a distance of 2.17 test-section heights
Along-Strike Growth of the Ostler Fault, New Zealand: Consequences for Drainage Deflection above Active Thrust
Rarely are geologic records available to constrain the spatial and temporal evolution of thrust‐fault growth as slip accumulates during repeated earthquake events. Here, we utilize multiple generations of dated and deformed fluvial terraces to explore two key aspects of the along‐strike kinematic development of the Ostler fault zone in southern New Zealand over the past ∼100 k.y.: accumulation of fault slip through space and time and fixed‐length thrust growth that results in patterns of drainage diversion suggestive of laterally propagating faults. Along the Ostler fault, surface deformation patterns revealed by topographic surveying of terrace profiles in nine transverse drainages define systematic variations in fault geometry and suggest deformation over both listric and planar thrust ramps. Kinematic modeling of folded terrace profiles and \u3e100 fault‐scarp surveys along major fault sections reveals remarkably similar slip distributions for multiple successions of geomorphic surfaces spanning ∼100 k.y. Spatially abrupt and temporally sustained displacement gradients across zones of fault section overlap suggest that either persistent barriers to fault propagation or interference between overlapping faults dominate the interactions of fault tips from the scale of individual scarps to the entire fault zone. Deformed terrace surfaces dated using optically stimulated luminescence and cosmogenic radionuclides indicate steady, maximum rates of fault slip of ∼1.9 mm/yr during the Late Quaternary. Slip data synthesized along the central Ostler fault zone imply that displacement accumulated at approximately constant fault lengths over the past ∼100 k.y. A northward temporal progression of abandoned wind gaps along this section thus reflects lateral tilting in response to amplification of displacement, rather than simple fault lengthening or lateral propagation. Oscillations of climate at ∼104‐yr time scales modulate the formation and incision of geomorphic surfaces during successive glacial stages. Superimposed on apparently steadier rates of fault slip, such climate‐dependent surfaces contribute to a pattern of progressive drainage deflection along the central Ostler fault zone that is largely independent of fault propagation
Active deformation in the Pamir – Tian Shan collision zone, NW China
Abstract HKT-ISTP 2013
A
Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation in the Mackenzie Basin, South Island, New Zealand
Deformed fluvial terraces preserved over active thrust-related folds record the kinematics of folding as fault slip accumulates on the underlying thrust. In the Mackenzie Basin of southern New Zealand, the kinematics revealed by folded fluvial terraces along the active Ostler and Irishman Creek fault zones are inconsistent with traditional models for thrust-related folding in which spatially uniform rock uplift typically occurs over planar fault ramps. Instead, warped and tilted terraces in the Mackenzie are characterized by broad, continuous backlimbs and abrupt forelimbs and suggest folding through progressive limb rotation. By relating this pattern of surface deformation to the underlying thrust with a newly developed, simple geometric and kinematic model, we interpret both faults as listric thrusts rooted at depth into gently dipping planar fault ramps. Constraints on the model from detailed topographic surveying of deformed terraces, ground-penetrating radar over active fault scarps, and luminescence dating of terrace surfaces suggest slip rates for the Ostler and Irishman Creek faults of ~1.1– 1.7 mm/yr and~0.5–0.7 mm/yr, respectively. The predicted depth of listric faulting for the Ostler fault (0.70 +0.1-0.2 km) and the Irishman Creek fault (1.3+0.1-0.5 km) generally agrees with geophysical estimates of basin depth in the Mackenzie and suggests control of preexisting basin architecture on the geometry of active thrusting. Despite the potential effects of changes in fault curvature and hanging wall internal deformation, the methodology presented here provides a simple tool for approximating the kinematics of surface deformation associated with slip along listric, or curviplanar, thrust faults
- …