362 research outputs found

    Gauge Invariant Treatment of the Electroweak Phase Transition

    Full text link
    We evaluate the gauge invariant effective potential for the composite field σ=2ΦΦ\sigma=2\Phi^{\dagger}\Phi in the SU(2)-Higgs model at finite temperature. Symmetric and broken phases correspond to the domains σT2/3\sigma\leq T^2/3 and σ>T2/3\sigma > T^2/3, respectively. The effective potential increases very steeply at small values of σ\sigma. Predictions for several observables, derived from the ordinary and the gauge invariant effective potential, are compared. Good agreement is found for the critical temperature and the jump in the order parameter. The results for the latent heat differ significantly for large Higgs masses.Comment: 8 pages latex, DESY-94-043, 4 figures can be obtained via e-mail from [email protected]

    Four-dimensional Simulation of the Hot Electroweak Phase Transition with the SU(2) Gauge-Higgs Model

    Get PDF
    We study the finite-temperature phase transition of the four-dimensional SU(2) gauge-Higgs model for intermediate values of the Higgs boson mass in the range 50 \lsim m_H \lsim 100GeV on a lattice with the temporal lattice size Nt=2N_t=2. The order of the transition is systematically examined using finite size scaling methods. Behavior of the interface tension and the latent heat for an increasing Higgs boson mass is also investigated.Comment: Talk presented at LATTICE96(electroweak), 3 pages of LaTeX, 4 PostScript figure

    Where the electroweak phase transition ends

    Get PDF
    We give a more precise characterisation of the end of the electroweak phase transition in the framework of the effective 3d SU(2)--Higgs lattice model than has been given before. The model has now been simulated at gauge couplings beta_G=12 and 16 for Higgs masses M_H^*=70, 74, 76 and 80 GeV up to lattices 96^3 and the data have been used for reweighting. The breakdown of finite volume scaling of the Lee-Yang zeroes indicates the change from a first order transition to a crossover at lambda_3/g_3^2=0.102(2) in rough agreement with results of Karsch et al (hep-lat/9608087) at \beta_G=9 and smaller lattices. The infinite volume extrapolation of the discontinuity Delta /g_3^2 turns out to be zero at lambda_3/g_3^2=0.107(2) being an upper limit. We comment on the limitations of the second method.Comment: RevTeX, 19 pages, 11 figures, 2 tables; additional MC-data near the endpoint considere

    Possible evidence of non-Fermi liquid behavior from quasi-one-dimensional indium nanowires

    Full text link
    We report possible evidence of non-Fermi liquid (NFL) observed at room temperature from the quasi one-dimensional (1D) indium (In) nanowires self-assembled on Si(111)-7×\times7 surface. Using high-resolution electron-energy-loss spectroscopy, we have measured energy and width dispersions of a low energy intrasubband plasmon excitation in the In nanowires. We observe the energy-momentum dispersion ω\omega(q) in the low q limit exactly as predicted by both NFL theory and the random-phase-approximation. The unusual non-analytic width dispersion ζ(q)qα\zeta(q) \sim q^{\alpha} measured with an exponent α{\alpha}=1.40±\pm0.24, however, is understood only by the NFL theory. Such an abnormal width dispersion of low energy excitations may probe the NFL feature of a non-ideal 1D interacting electron system despite the significantly suppressed spin-charge separation (\leq40 meV).Comment: 11 pages and 4 figure

    Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    Get PDF
    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorptio
    corecore