55 research outputs found

    Dynamics of nonequilibrium quasiparticles in a double superconducting tunnel junction detector

    Full text link
    We study a class of superconductive radiation detectors in which the absorption of energy occurs in a long superconductive strip while the redout stage is provided by superconductive tunnel junctions positioned at the two ends of the strip. Such a device is capable both of imaging and energy resolution. In the established current scheme, well studied from the theoretical and experimental point of view, a fundamental ingredient is considered the presence of traps, or regions adjacent to the junctions made of a superconducting material of lower gap. We reconsider the problem by investigating the dynamics of the radiation induced excess quasiparticles in a simpler device, i.e. one without traps. The nonequilibrium excess quasiparticles can be seen to obey a diffusion equation whose coefficients are discontinuous functions of the position. Based on the analytical solution to this equation, we follow the dynamics of the quasiparticles in the device, predict the signal formation of the detector and discuss the potentiality offered by this configuration.Comment: 16 pages, 5 figures Submitted to Superconducting Science and Technolog

    Atomic layer deposition of high-k dielectric layers on Ge and III-V MOS channels

    Get PDF
    Ge and III-V semiconductors are potential high performance channel materials for future CMOS devices. In this work, we have studied At. Layer Deposition (ALD) of high-k dielec. layers on Ge and GaAs substrates. We focus at the effect of the oxidant (H2O, O3, O2, O2 plasma) during gate stack formation. GeO2, obtained by Ge oxidn. in O2 or O3, is a promising passivation layer. The germanium oxide thickness can be scaled down below 1 nm, but such thin layers contain Ge in oxidn. states lower than 4+. Still, elec. results indicate that small amts. of Ge in oxidn. states lower than 4+ are not detrimental for device performance. Partial intermixing was obsd. for high-k dielec. and GeO2 or GaAsOx, suggesting possible correlations in the ALD growth mechanisms on Ge and GaAs substrates. [on SciFinder (R)

    Systemic Risk: Fire-Walling Financial Systems Using Network-Based Approaches

    Full text link
    The latest financial crisis has painfully revealed the dangers arising from a globally interconnected financial system. Conventional approaches based on the notion of the existence of equilibrium and those which rely on statistical forecasting have seen to be inadequate to describe financial systems in any reasonable way. A more natural approach is to treat financial systems as complex networks of claims and obligations between various financial institutions present in an economy. The generic framework of complex networks has been successfully applied across several disciplines, e.g., explaining cascading failures in power transmission systems and epidemic spreading. Here we review various network models addressing financial contagion via direct inter-bank contracts and indirectly via overlapping portfolios of financial institutions. In particular, we discuss the implications of the "robust-yet-fragile" nature of financial networks for cost-effective regulation of systemic risk.Comment: 19 pages, 7 figure

    Risk and regulation

    No full text

    Verteilung des Staubes in der Instillation drei- und zweiphasiger Suspensionen von grubenechtem Feinstaub

    No full text

    High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step

    No full text
    © 2015 Elsevier B.V. All rights reserved. Solution processed CH3NH3PbIxCl3-x based planar heterojunction perovskite solar cells with power conversion efficiency (PCE) above 14% are reported. The devices benefit from a phenyl-C61-butyric acid methyl ester (PCBM)/ZnO double electron transport layer (ETL) as well as a short air-aging step. The role of the additional ZnO ETL is studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS). Apart from improving the energy level alignment, the ZnO layer blocks the reactions between the metal electrode and perovskite components, increasing the air stability of the device. A crucial step in our processing is a short air-aging step for the device, which significantly increases the device performance by reducing the recombination process. Since the ZnO nanoparticle layer requires no thermal annealing, the maximum temperature to fabricate the device can be kept below 100 °C, making this structure compatible with roll-to-roll processing on plastic films.status: publishe

    High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step

    No full text
    Solution processed CH3NH3PbIxCl3–x based planar heterojunction perovskite solar cells with power conversion efficiency (PCE) above 14% are reported. The devices benefit from a phenyl-C61-butyric acid methyl ester (PCBM)/ZnO double electron transport layer (ETL) as well as a short air-aging step. The role of the additional ZnO ETL is studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS). Apart from improving the energy level alignment, the ZnO layer blocks the reactions between the metal electrode and perovskite components, increasing the air stability of the device. A crucial step in our processing is a short air-aging step for the device, which significantly increases the device performance by reducing the recombination process. Since the ZnO nanoparticle layer requires no thermal annealing, the maximum temperature to fabricate the device can be kept below 100 °C, making this structure compatible with roll-to-roll processing on plastic films
    • …
    corecore