147 research outputs found

    Analysis of inhibitor of apoptosis protein family expression during mammary gland development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitors-of-Apoptosis-Proteins (IAPs) are an evolutionarily conserved family of proteins capable of regulating several facets of apoptosis. IAPs are frequently dysregulated in cancer, but their role in the regulation of apoptosis during developmental processes is not fully understood. Here we examined the expression of IAPs during the post-natal development of the mouse mammary gland, which is a tissue that exhibits a profound induction of apoptosis during involution.</p> <p>Results</p> <p>Six out of eight mammalian IAP family members are expressed in the mammary gland. Notably, quantitative PCR and immunoblotting revealed that XIAP, c-IAP1 and c-IAP2 are down-regulated in pregnancy and lactation, and prior to the onset of involution. In cultured mammary epithelial cells (MECs), XIAP levels decreased in response to inhibition of growth factor signalling. Maintaining XIAP levels in MECs by expressing exogenous XIAP protected them from all apoptotic stimuli tested.</p> <p>Conclusions</p> <p>These data suggest that the developmental regulation of IAP expression <it>in vivo </it>contributes to naturally occurring programmes of cell death.</p

    Jumping without Using Legs: The Jump of the Click-Beetles (Elateridae) Is Morphologically Constrained

    Get PDF
    To return to their feet, inverted click-beetles (Elateridae) jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant “takeoff” angle (79.9°±1.56°, n = 9 beetles) that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing

    Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds

    Get PDF
    © 2015 Apostolaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Comparative study of calculated and actual dimensions in shaped weft-knitwear

    Get PDF
    This research explores and quantifies the relationship between traditional mathematical theories used for the calculation of fully-fashioned, weft-knitwear and the physical measurements of knitted garments in order to improve sizing accuracy within knitted garment production. Experiments were conducted to compare and contrast fashioning frequencies for 10-gauge knitted structures, which determined the resultant selvedge dimensions specifically within the armhole region. The trials used the geometrical principle of Pythagoras Theorem to calculate sleeve head and armhole shapes from the stitch densities. The findings identified that the greater distance between the fashionings, the less distortion occurred within the knitted structure and therefore a stronger relationship existed between the calculated seam dimensions and those measured from the physical knitted panels. The research developed new methods for calculating fit and alignment in commercial, fully-fashioned, weft-knitwear. This will result in a more sustainable, fully-fashioned, knitted product and reduce the number of returns to the retailer, due to size inaccuracies

    Language experience impacts brain activation for spoken and signed language in infancy: Insights from unimodal and bimodal bilinguals

    Get PDF
    Recent neuroimaging studies suggest that monolingual infants activate a left lateralised fronto-temporal brain network in response to spoken language, which is similar to the network involved in processing spoken and signed language in adulthood. However, it is unclear how brain activation to language is influenced by early experience in infancy. To address this question, we present functional near infrared spectroscopy (fNIRS) data from 60 hearing infants (4-to-8 months): 19 monolingual infants exposed to English, 20 unimodal bilingual infants exposed to two spoken languages, and 21 bimodal bilingual infants exposed to English and British Sign Language (BSL). Across all infants, spoken language elicited activation in a bilateral brain network including the inferior frontal and posterior temporal areas, while sign language elicited activation in the right temporo-parietal area. A significant difference in brain lateralisation was observed between groups. Activation in the posterior temporal region was not lateralised in monolinguals and bimodal bilinguals, but right lateralised in response to both language modalities in unimodal bilinguals. This suggests that experience of two spoken languages influences brain activation for sign language when experienced for the first time. Multivariate pattern analyses (MVPA) could classify distributed patterns of activation within the left hemisphere for spoken and signed language in monolinguals (proportion correct = 0.68; p = 0.039) but not in unimodal or bimodal bilinguals. These results suggest that bilingual experience in infancy influences brain activation for language, and that unimodal bilingual experience has greater impact on early brain lateralisation than bimodal bilingual experience

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF
    • …
    corecore