631 research outputs found

    THE EFFECT OF DIFFERENT FOOTWEAR ON THE MYOELECTRIC ACTIVITY OF M. TIBIALIS POSTERIOR DURING TREADMILL RUNNING

    Get PDF
    Overload running injuries of the lower extremity, particularly the knee, are associated with excessive pronation of the foot resulting in tibial rotation (Nigg et al., 1995). M. tibialis posterior (TP) is shown to have an active influence on pronation and the medial longitudinal arch (Kaye & Jahss, 1991). Its functional role during running and interaction with footwear is still not clearly understood (Reber et al., 1993; O’Connor & Hamill, 2004). Therefore the purpose of this study is to investigate the influence of different footwear on the muscle’s EMG pattern

    WIRE EMG OF FLEXOR HALLUCIS LONGUS DURING BAREFOOT AND SHOD RUNNING ON A TREADMILL: A PILOT STUDY

    Get PDF
    Excessive pronation is associated with overload injuries of the lower extremity (Nigg, 1995). The flexor hallucis longus (FHL) acts against the pronation of the calcaneus (Klein, 1996). The influence of different footwear on the activity of the FHL was neither measured in walking nor running. The purpose of this study was to investigate the activity of the FHL during different phases in stance of walking and running in different footwear conditions

    Ocean variability and its influence on the detectability of greenhouse warming signals

    Get PDF
    Recent investigations have considered whether it is possible to achieve early detection of greenhouse-gas-induced climate change by observing changes in ocean variables. In this study we use model data to assess some of the uncertainties involved in estimating when we could expect to detect ocean greenhouse warming signals. We distinguish between detection periods and detection times. As defined here, detection period is the length of a climate time series required in order to detect, at some prescribed significance level, a given linear trend in the presence of the natural climate variability. Detection period is defined in model years and is independent of reference time and the real time evolution of the signal. Detection time is computed for an actual time-evolving signal from a greenhouse warming experiment and depends on the experiment's start date. Two sources of uncertainty are considered: those associated with the level of natural variability or noise, and those associated with the time-evolving signals. We analyze the ocean signal and noise for spatially averaged ocean circulation indices such as heat and fresh water fluxes, rate of deep water formation, salinity, temperature, transport of mass, and ice volume. The signals for these quantities are taken from recent time-dependent greenhouse warming experiments performed by the Max Planck Institute for Meteorology in Hamburg with a coupled ocean-atmosphere general circulation model. The time-dependent greenhouse gas increase in these experiments was specified in accordance with scenario A of the Intergovernmental Panel on Climate Change. The natural variability noise is derived from a 300-year control run performed with the same coupled atmosphere-ocean model and from two long (>3000 years) stochastic forcing experiments in which an uncoupled ocean model was forced by white noise surface flux variations. In the first experiment the stochastic forcing was restricted to the fresh water fluxes, while in the second experiment the ocean model was additionally forced by variations in wind stress and heat fluxes. The mean states and ocean variability are very different in the three natural variability integrations. A suite of greenhouse warming simulations with identical forcing but different initial conditions reveals that the signal estimated from these experiments may evolve in noticeably different ways for some ocean variables. The combined signal and noise uncertainties translate into large uncertainties in estimates of detection time. Nevertheless, we find that ocean variables that are highly sensitive indicators of surface conditions, such as convective overturning in the North Atlantic, have shorter signal detection times (35?65 years) than deep-ocean indicators (≥100 years). We investigate also whether the use of a multivariate detection vector increases the probability of early detection. We find that this can yield detection times of 35?60 years (relative to a 1985 reference date) if signal and noise are projected onto a common ?fingerprint? which describes the expected signal direction. Optimization of the signal-to-noise ratio by (spatial) rotation of the fingerprint in the direction of low-noise components of the stochastic forcing experiments noticeably reduces the detection time (to 10?45 years). However, rotation in space alone does not guarantee an improvement of the signal-to-noise ratio for a time-dependent signal. This requires an ?optimal fingerprint? strategy in which the detection pattern (fingerprint) is rotated in both space and time

    Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods

    Get PDF
    The hygroscopic properties of atmospheric aerosols are highly relevant for the quantification of radiative effects in the atmosphere, but also of interest for the assessment of particle health effects upon inhalation. This article reports measurements of aerosol particle hygroscopicity in the highly polluted urban atmosphere of Beijing, China in January 2005. The meteorological conditions corresponded to a relatively cold and dry atmosphere. Three different methods were used: 1) A combination of Humidifying Differential Mobility Particle Sizer (H-DMPS) and Twin Differential Mobility Particle Sizer (TDMPS) measurements, 2) A Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA), and 3) A simplistic solubility model fed by chemical particle composition determined from Micro Orifice Uniform Deposit Impactor (MOUDI) samples. From the H-DMPS and TDMPS particle number size distributions, a size-resolved descriptive hygroscopic growth factor (DHGF) was determined for the relative humidities (RH) 55%, 77% and 90%, and particle diameters between 30 and 400 nm. In Beijing, the highest DHGFs were observed for accumulation mode particles, 1.40 (±0.03) at 90% RH. DHGF decreased significantly with particle size, reaching 1.04 (±0.15) at 30 nm. H-TDMA data also suggest a decrease in growth factor towards the biggest particles investigated (350 nm), associated with an increasing fraction of nearly hydrophobic particles. The agreement between the H-DMPS/TDMPS and H-TDMA methods was satisfactory in the accumulation mode size range (100–400 nm). In the Aitken mode range (<100 nm), the H-DMPS/TDMPS method yielded growth factors lower by up to 0.1 at 90% RH. The application of the solubility model based on measured chemical composition clearly reproduced the size-dependent trend in hygroscopic particle growth observed by the other methods. In the case of aerosol dominated by inorganic ions, the composition-derived growth factors tended to agree (± 0.05) or underestimate (up to 0.1) the values measured by the other two methods. In the case of aerosol dominated by organics, the reverse was true, with an overestimation of up to 0.2. The results shed light on the experimental and methodological uncertainties that are still connected with the determination of hygroscopic growth factors

    Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany

    Get PDF
    Residential wood burning is becoming an increasingly important cause of air quality problems since it has become a popular source of alternative energy to fossil fuel. In order to characterize the contribution of residential wood burning to local particle pollution, a field campaign was organized at the village of Seiffen (Saxony, Germany). During this campaign, an Aerosol Mass Spectrometer (AMS) was deployed in parallel to a PM&lt;sub&gt;1&lt;/sub&gt; high volume filter sampler. The AMS mass spectra were analyzed using Positive Matrix Factorization (PMF) to obtain detailed information about the organic aerosol (OA). Biomass-burning organic aerosol (BBOA), Hydrocarbon-like organic aerosol (HOA), and Oxygenated Organic Aerosol (OOA) were identified and represented 20%, 17% and 62% of total OA, respectively. Additionally, Polycyclic Aromatic Hydrocarbons (PAH) were measured by the AMS with an average concentration of 10 ng m&lt;sup&gt;−3&lt;/sup&gt; and short term events of extremely high PAH concentration (up to 500 ng m&lt;sup&gt;−3&lt;/sup&gt;) compared to the mean PAH value were observed during the whole measurement period. A comparison with the results from PM&lt;sub&gt;1&lt;/sub&gt; filter samples showed that the BBOA factor and the AMS PAH are good indicators of the total concentration of the different monosaccharide anhydrides and PAH measured on the filter samples. Based on its low correlation with CO and the low car traffic, the HOA factor was considered to be related to residential heating using liquid fuel. An influence of the time of the week (week vs. weekend) on the diurnal profiles of the different OA components was observed. The weekdays were characterized by two maxima; a first one early in the morning and a stronger one in the evening. During the weekend days, the different OA components principally reached only one maximum in the afternoon. Finally, the PAH emitted directly from residential wood combustion was estimated to represent 1.5% of the total mass of the BBOA factor and around 62% of the total PAH concentration measured at Seiffen. This result highlights the important contribution of residential wood combustion to air quality and PAH emissions at the sampling place, which might have a significant impact on human health. Moreover, it also emphasizes the need for a better time resolution of the chemical characterization of toxic particulate compounds in order to provide more information on variations of the different sources through the days as well as to better estimate the real human exposure

    Locomotor stability and adaptation during perturbed walking across the adult female lifespan.

    Get PDF
    The aim of this work was to examine locomotor stability and adaptation across the adult female lifespan during perturbed walking on the treadmill. 11 young, 11 middle and 14 older-aged female adults (mean and SD: 25.5(2.1), 50.6(6.4) and 69.0(4.7) years old respectively) walked on a treadmill. We applied a sustained perturbation to the swing phase of the right leg for 18 consecutive gait cycles, followed by a step with the resistance unexpectedly removed, via an ankle strap connected to a break-and-release system. The margin of stability (MoS) at foot touchdown was calculated as the difference between the anterior boundary of the base of support (BoS) and extrapolated center of mass. Older participants showed lower MoS adaptation magnitude in the early adaptation phase (steps 1-3) compared to the young and middle-aged groups. However, in the late adaptation phase (steps 16-18) there were no significant differences in adaptation magnitude between the three age groups. After removing the resistance, all three age groups showed similar aftereffects (i.e. increased BoS). The current results suggest that in old age, the ability to recalibrate locomotion to control stability is preserved, but the rate of adaptive improvement in locomotor stability is diminished

    Responses to iron deficiency in Arabidopsis thaliana : The Turbo iron reductase does not depend on the formation of root hairs and transfer cells

    Full text link
    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a K m of 45 and 54 μM Fe III -EDTA and a V max of 42 and 33 nmol Fe 2+ ·(g FW) −1 ·min −1 for the wild type and the mutant, respectively. The pH optimum for the reaction was around pH 5.5. The approximately four fold stimulation of FCR activity was independent of formation of root hairs and/or transfer cells induced by iron deficiency. Iron-deficiency-induced chlorosis and the development of a rigid root habit disappeared when ferric chelate was applied to the leaves, while FCR activity remained unchanged. The time course of the responses to iron deficiency showed that morphological and physiological responses were controlled separately.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47479/1/425_2004_Article_BF00195707.pd
    corecore