572 research outputs found

    Initial surface deformations during impact on a liquid pool

    Get PDF
    A tiny air bubble can be entrapped at the bottom of a solid sphere that impacts onto a liquid pool. The bubble forms due to the deformation of the liquid surface by a local pressure buildup inside the surrounding gas, as also observed during the impact of a liquid drop on a solid wall. Here we perform a perturbation analysis to quantitatively predict the initial deformations of the free surface of the liquid pool as it is approached by a solid sphere. We study the natural limits where the gas can be treated as a viscous fluid (Stokes flow) or as an inviscid fluid (potential flow). For both cases we derive the spatio-temporal evolution of the pool surface, and recover some of the recently proposed scaling laws for bubble entrapment. When inserting typical experimental values for the impact parameters, we find that the bubble volume is mainly determined by the effect of gas viscosity

    Universal mechanism for air entrainment during liquid impact

    Get PDF
    When a mm-sized liquid drop approaches a deep liquid pool, both the interface of the drop and the pool deform before the drop touches the pool. The build up of air pressure prior to coalescence is responsible for this deformation. Due to this deformation, air can be entrained at the bottom of the drop during the impact. We quantify the amount of entrained air numerically, using the Boundary Integral Method (BIM) for potential flow for the drop and the pool, coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We compare our results to various experimental data and find excellent agreement for the amount of air that is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a pool is numerically investigated and the air that is entrapped in this case also matches with available experimental data. In both cases of drop and sphere impact onto a pool the numerical air bubble volume V_b is found to be in agreement with the theoretical scaling V_b/V_{drop/sphere} ~ St^{-4/3}, where St is the Stokes number. This is the same scaling that has been found for drop impact onto a solid surface in previous research. This implies a universal mechanism for air entrainment for these different impact scenarios, which has been suggested in recent experimental work, but is now further elucidated with numerical results

    The liquid helix

    Get PDF
    From everyday experience, we all know that a solid edge can deflect a liquid flowing over it significantly, up to the point where the liquid completely sticks to the solid. Although important in pouring, printing and extrusion processes, there is no predictive model of this so-called "teapot effect". By grazing vertical cylinders with inclined capillary liquid jets, we here use the teapot effect to attach the jet to the solid and form a new structure: the liquid helix. Using mass and momentum conservation along the liquid stream, we first quantitatively predict the shape of the helix and then provide a parameter-free inertial-capillary adhesion model for the jet deflection and critical velocity for helix formation.Comment: Accepted in Physical Review Letters, author versio

    Component-Specific Usability Testing

    Full text link

    A search for fast radio burst-like emission from Fermi gamma-ray bursts

    Full text link
    We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2-1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about one minute, for a duration of up to 11 hours after the burst. The data was searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm3^{-3}, and for pulse widths ww over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above 26Jyms(w/1ms)1/226 {\rm Jy ms} (w/1 {\rm ms})^{-1/2} for any of the 20 GRBs.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    The Highest Energy Neutrinos

    Full text link
    Measurements of the arrival directions of cosmic rays have not revealed their sources. High energy neutrino telescopes attempt to resolve the problem by detecting neutrinos whose directions are not scrambled by magnetic fields. The key issue is whether the neutrino flux produced in cosmic ray accelerators is detectable. It is believed that the answer is affirmative, both for the galactic and extragalactic sources, provided the detector has kilometer-scale dimensions. We revisit the case for kilometer-scale neutrino detectors in a model-independent way by focussing on the energetics of the sources. The real breakthrough though has not been on the theory but on the technology front: the considerable technical hurdles to build such detectors have been overcome. Where extragalactic cosmic rays are concerned an alternative method to probe the accelerators consists in studying the arrival directions of neutrinos produced in interactions with the microwave background near the source, i.e. within a GZK radius. Their flux is calculable within large ambiguities but, in any case, low. It is therefore likely that detectors that are larger yet by several orders of magnitudes are required. These exploit novel techniques, such as detecting the secondary radiation at radio wavelengths emitted by neutrino induced showers.Comment: 16 pages, pdflatex, 7 jpg figures, ICRC style files included. Highlight talk presented at the 30th International Cosmic Ray Conference, Merida, Mexico, 200

    Point-Form Analysis of Elastic Deuteron Form Factors

    Full text link
    Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Argonne v18v_{18} and Reid '93 interactions. A point-form spectator approximation (PFSA) is introduced to define a conserved covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate description of data up to momentum transfers of 0.5 GeV2{\rm GeV}^2, but falls below the data at higher momentum transfers. Results are sensitive to the nucleon form factor parameterization chosen, particularly to the neutron electric form factor.Comment: RevTex, 31 pages, 1 table, 13 figure

    Response latency and accuracy in visual word recogniton

    Full text link
    corecore