20 research outputs found

    Mosaic Expression of Med12 in Female Mice Leads to Exencephaly, Spina Bifida, and Craniorachischisis.

    No full text
    BACKGROUND: A precise temporal and spatial regulation of gene expression is necessary to achieve neural tube closure. Med12, a subunit of the mediator complex, can bind transcription factors and modulate expression of their target genes. Med12 is essential during early mouse development and is important for neural tube closure. METHODS: We have made use of a mouse line carrying a conditional null allele of the X-linked Med12 gene to generate heterozygous female embryos that express Med12 in a mosaic fashion thus allowing the study of the role of Med12 during neural tube closure. RESULTS: Mosaic expression of Med12 causes a wide variety of embryonic phenotypes. Some embryos were unable to complete turning and were found with arrested development at embryonic day (ED) 9.5. Others were able to pass ED 12.5 and displayed defects in neural tube closure. These defects included exencephaly, spina bifida, craniorachischisis, split face, and curly tail. Histologic and skeletal analyses of these mutant females show that the neural plate is unable to elevate and is completely flat in the regions of the body axis where neural tube closure fails. CONCLUSIONS: We report examples of all known neural tube defects implying Med12 in the full process of neural tube closure along the complete body axis. Our work points to Med12 being an essential coregulator of transcription factors controlling neural tube closure

    Transposon mutagenesis of the plant-associated <em>Bacillus amyloliquefaciens</em> ssp. plantarum FZB42 revealed that the <em>nfrA</em> and <em>RBAM17410</em> genes are involved in plant-microbe-interactions.

    No full text
    Bacillus amyloliquefaciens ssp. plantarum FZB42 represents the prototype of Gram-positive plant growth promoting and biocontrol bacteria. In this study, we applied transposon mutagenesis to generate a transposon library, which was screened for genes involved in multicellular behavior and biofilm formation on roots as a prerequisite of plant growth promoting activity. Transposon insertion sites were determined by rescue-cloning followed by DNA sequencing. As in B. subtilis, the global transcriptional regulator DegU was identified as an activator of genes necessary for swarming and biofilm formation, and the DegU-mutant of FZB42 was found impaired in efficient root colonization. Direct screening of 3,000 transposon insertion mutants for plant-growth-promotion revealed the gene products of nfrA and RBAM_017140 to be essential for beneficial effects exerted by FZB42 on plants. We analyzed the performance of GFP-labeled wild-type and transposon mutants in the colonization of lettuce roots using confocal laser scanning microscopy. While the wild-type strain heavily colonized root surfaces, the nfrA mutant did not colonize lettuce roots, although it was not impaired in growth in laboratory cultures, biofilm formation and swarming motility on agar plates. The RBAM17410 gene, occurring in only a few members of the B. subtilis species complex, was directly involved in plant growth promotion. None of the mutant strains were affected in producing the plant growth hormone auxin. We hypothesize that the nfrA gene product is essential for overcoming the stress caused by plant response towards bacterial root colonization
    corecore