3,500 research outputs found

    Measurement of dimensional stability

    Get PDF
    A technique was developed for measuring, with a precision of one part 10 to the 9th power, changes in physical dimensions delta L/L. Measurements have commenced on five materials: Heraeus-Schott Homosil (vitreous silica), Corning 7940 (vitreous silica), Corning ULE 7971 (titanium silicate), Schott Zero-Dur, and Owens-Illinois Cer-Vit C-101. The study was extended to include Universal Cyclops Invar LR-35 and Simonds-Saw Superinvar

    Fused silica diaphragm module for high temperature pressure transducers

    Get PDF
    A high temperature pressure transducer and sensing apparatus to determine the deflection of the transducer diaphragm is disclosed. The pressure transducer utilizes a fused silica diaphragm (12) which is illuminated at selected locations by a coherent laser source (52) via optical fibers (38, 46). The light reflected by the diaphragm (12) forms interference fringe patterns which are focused by gradient index rod lenses (36) on the ends of optical fibers (40, 48) for transmission to a fringe counting circuit (54). By digital techniques, the fringe count is converted into a determination of diaphragm deflection

    Development of optical diaphragm deflection sensors

    Get PDF
    The objective of this project was to develop high-temperature pressure sensors using non-metallic components and optical sensing methods. The sensors are to operate over a temperature range from room temperature approx. 20C to 540C, to respond to internal pressure up to 690 kPa, to respond to external pressure up to 690 kPa, and to withstand external overpressure of 2070 kPa. Project tasks include evaluating sensing techniques and sensor systems. These efforts include materials and sensing method selection, sensor design, sensor fabrication, and sensor testing. Sensors are tested as a function of temperature, pressure, overpressure, and vibration. The project results show that high-temperature pressure sensors based on glass components and optical sensing methods are feasible. The microbend optical diaphragm deflection sensor exhibits the required sensitivity and stability for use as a pressure sensor with temperature compensation. for the microbend sensor, the 95% confidence level deviation of input pressure from the pressure calculated from the overall temperature-compensated calibration equation is 3.7% of full scale. The limitations of the sensors evaluated are primarily due to the restricted temperature range of suitable commercially available optical fibers and the problems associated with glass-to-metal pressure sealing over the entire testing temperature range

    Iterative procedure for computing accessible information in quantum communication

    Full text link
    We present an iterative algorithm that finds the optimal measurement for extracting the accessible information in any quantum communication scenario. The maximization is achieved by a steepest-ascent approach toward the extremal point, following the gradient uphill in sufficiently small steps. We apply it to a simple ad-hoc example, as well as to a problem with a bearing on the security of a tomographic protocol for quantum key distribution.Comment: REVTeX, 4 pages, 1 figure, 1 tabl

    The Application of Linear Systems Analysis to Image Processing. Some Notes.

    Get PDF
    This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-70-A-0362-0005.The Fourier transform is a convenient tool for analyzing the performance of an image-forming system, but must be treated with caution. One of its major uses is turning convolutions into products. It is also used to transform a problem that is more naturally thought of in terms of frequency than time or space. We define the point-spread function and modulation transfer function in a two-dimensional linear system as analogues of the one-dimensional impulse response and its Fourier transform, the frequency response, respectively. For many imagine devices, the point-spread function is rotationally symmeteric. Useful tranforms developed for the special cases of a "pill box,", a gaussian blob, and an inverse scatter function. Fourier methods are appropriate in the analysis of a defocused imaging system. We define a focus function as a weighted sum of high frequency terms in the spectrum of the system. This function will be a maximum when the image is in focus, and we can hill-climb on it to determine the best focus. We compare this function against two others, the sum of squares of intensities, and the sum of square of first differences, and show it to be superior. Another use of the Fourier transform is in optimal filtering, that is, of filtering to separate additive noise from a desired signal. We discuss the theory for the two-dimensional case, which is actually easier than for a single dimension since causality is not an issue. We show how to consumerist a linear, shift-invariant filter for imaging systems given only the input power spectrum and cross-power spectrum of input versus desired output. Finally, we present two ways to calculate the line-spread function given the point-spread function.MIT Artificial Intelligence Laborator

    The Morning and Evening Service

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1309/thumbnail.jp

    Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons

    Get PDF
    Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett \& Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and to investigate, for the first time, a recently introduced differential phase shift (Chau15) protocol using twisted photons. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions.Comment: 13 pages, 4 figures, 1 tabl

    Minimal qubit tomography

    Full text link
    We present, and analyze thoroughly, a highly symmetric and efficient scheme for the determination of a single-qubit state, such as the polarization properties of photons emitted by a single-photon source. In our scheme there are only four measured probabilities, just enough for the determination of the three parameters that specify the qubit state, whereas the standard procedure would measure six probabilities.Comment: 14 pages, 10 figures; final versio

    Eigenvalue and Eigenvector Analysis of Stability for a Line of Traffic

    Get PDF
    Many authors have recognized that traffic under the traditional car-following model (CFM) is subject to flow instabilities. A recent model achieves stability using bilateral control (BCM)—by looking both forward and backward [1]. (Looking back may be difficult or distracting for human drivers, but is not a problem for sensors.) We analyze the underlying systems of differential equations by studying their eigenvalues and eigenvectors under various boundary conditions. Simulations further confirm that bilateral control can avoid instabilities and reduce the chance of collisions

    Incomplete quantum state estimation: a comprehensive study

    Full text link
    We present a detailed account of quantum state estimation by joint maximization of the likelihood and the entropy. After establishing the algorithms for both perfect and imperfect measurements, we apply the procedure to data from simulated and actual experiments. We demonstrate that the realistic situation of incomplete data from imperfect measurements can be handled successfully.Comment: 11 pages, 10 figure
    corecore