399 research outputs found

    Density Expansion for the Mobility in a Quantum Lorentz Model

    Full text link
    We consider the mobility of electrons in an environment of static hard-sphere scatterers, which provides a realistic description of electrons in Helium gas. A systematic expansion in the scatterer density is carried to second order relative to the Boltzmann result, and the analytic contribution at this order is derived, together with the known logarithmic term in the density expansion. It is shown that existing experimental data are consistent with the existence of the logarithmic term in the density expansion, but more precise experiments are needed in order to unambiguously detect it. We show that our calculations provide the necessary theoretical information for such an experiment, and give a detailed discussion of a suitable parameter range.Comment: 17pp., REVTeX, 7 figure attached as 8 postscript files, db/94/

    Magnetic pair breaking in disordered superconducting films

    Full text link
    A theory for the effects of nonmagnetic disorder on the magnetic pair breaking rate α\alpha induced by paramagnetic impurities in quasi two-dimensional superconductors is presented. Within the framework of a strong-coupling theory for disordered superconductors, we find that the disorder dependence of α\alpha is determined by the disorder enhancements of both the electron-phonon coupling and the spin-flip scattering rate. These two effects have a tendency to cancel each other. With parameter values appropriate for Pb_{0.9} Bi_{0.1}, we find a pair breaking rate that is very weakly dependent on disorder for sheet resistances 0 < R < 2.5 kOhm, in agreement with a recent experiment by Chervenak and Valles.Comment: 6 pp., REVTeX, epsf, 2 eps figs, final version as publishe

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe

    Theory of Disordered Itinerant Ferromagnets I: Metallic Phase

    Full text link
    A comprehensive theory for electronic transport in itinerant ferromagnets is developed. We first show that the Q-field theory used previously to describe a disordered Fermi liquid also has a saddle-point solution that describes a ferromagnet in a disordered Stoner approximation. We calculate transport coefficients and thermodynamic susceptibilities by expanding about the saddle point to Gaussian order. At this level, the theory generalizes previous RPA-type theories by including quenched disorder. We then study soft-mode effects in the ferromagnetic state in a one-loop approximation. In three-dimensions, we find that the spin waves induce a square-root frequency dependence of the conductivity, but not of the density of states, that is qualitatively the same as the usual weak-localization effect induced by the diffusive soft modes. In contrast to the weak-localization anomaly, this effect persists also at nonzero temperatures. In two-dimensions, however, the spin waves do not lead to a logarithmic frequency dependence. This explains experimental observations in thin ferromagnetic films, and it provides a basis for the construction of a simple effective field theory for the transition from a ferromagnetic metal to a ferromagnetic insulator.Comment: 15pp., REVTeX, 2 eps figs, final version as publishe

    Local field theory for disordered itinerant quantum ferromagnets

    Full text link
    An effective field theory is derived that describes the quantum critical behavior of itinerant ferromagnets in the presence of quenched disorder. In contrast to previous approaches, all soft modes are kept explicitly. The resulting effective theory is local and allows for an explicit perturbative treatment. It is shown that previous suggestions for the critical fixed point and the critical behavior are recovered under certain assumptions. The validity of these assumptions is discussed in the light of the existence of two different time scales. It is shown that, in contrast to previous suggestions, the correct fixed point action is not Gaussian, and that the previously proposed critical behavior was correct only up to logarithmic corrections. The connection with other theories of disordered interacting electrons, and in particular with the resolution of the runaway flow problem encountered in these theories, is also discussed.Comment: 17pp., REVTeX, 5 eps figs, final version as publishe

    Theory of many-fermion systems II: The case of Coulomb interactions

    Get PDF
    In a recent paper (cond-mat/9703164) a general field-theoretical description of many-fermion systems with short-ranged interactions has been developed. Here we extend this theory to the case of disordered electrons interacting via a Coulomb potential. A detailed discussion is given of the Ward identity that controls the soft modes in the system, and the generalized nonlinear sigma model for the Coulombic case is derived and discussed.Comment: 12 pp., REVTeX, no figs, final version as publishe

    Phase-ordering dynamics in itinerant quantum ferromagnets

    Full text link
    The phase-ordering dynamics that result from domain coarsening are considered for itinerant quantum ferromagnets. The fluctuation effects that invalidate the Hertz theory of the quantum phase transition also affect the phase ordering. For a quench into the ordered phase a transient regime appears, where the domain growth follows a different power law than in the classical case, and for asymptotically long times the prefactor of the t^{1/2} growth law has an anomalous magnetization dependence. A quench to the quantum critical point results in a growth law that is not a power-law function of time. Both phenomenological scaling arguments and renormalization-group arguments are given to derive these results, and estimates of experimentally relevant length and time scales are presented.Comment: 6pp., 1 eps fig, slightly expanded versio

    Absence of electron dephasing at zero temperature

    Full text link
    Dephasing of electrons due to the electron-electron interaction has recently been the subject of a controversial debate, with different calculations yielding mutually incompatible results. In this paper we prove, by means of Ward identities, that neither a Coulomb interaction nor a short-ranged model interaction can lead to phase breaking at zero temperature in spatial dimensions d>2.Comment: 7 pp., LaTeX, no figs, final version as publishe

    Tricritical behavior in itinerant quantum ferromagnets

    Full text link
    It is shown that the peculiar features observed in the low-temperature phase diagrams of ZrZn_2, UGe_2, and MnSi can be understood in terms of a simple mean-field theory. The nature of the ferromagnetic transition changes from second order to first order at a tricritical point, and in a small external magnetic field surfaces of first-order transitions emerge which terminate in quantum critical points. This field dependence of the phase diagram follows directly from the existence of the tricritical point. The quantum critical behavior in a nonzero field is calculated exactly.Comment: 4pp., 4 eps figure
    • …
    corecore